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1 Estimating Posteriors for Latent Gaussian Models

Latent Gaussian models are a popular class of models and typically have the following hierarchical
structure:

¢ ~ m(P)
0; ~ Normal(0,%4)"")
Yiegiy ~ p0i,9)

where ¢ is a global parameter and 6 a local parameter. The observations y; belong to local groups
indexed by g(¢) and follow distributions parametrized by 6;. In this article, I focus on the common
case where ¢ is low dimensional and 6 high dimensional.

Our goal is to make inference about ¢. In a Bayesian setting, this amounts to computing the poste-
rior:
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The model gives us the terms in the nominator but not in the denominator. A straightforward way
to tackle this is to do a full Bayesian inference on both ¢ and §. However, doing so significantly
increases the dimension of our model’s parameter space.

The alternative approach is to perform inference on ¢ only, and approximate the conditional density
in the denominator as a Gaussian density. That is

p(0ly, ¢) ~ pg(0)

where pg is a normal density centered at the mode of p(8|y, ¢), which we denote 6*. Moreover, we
use the approximation,  /~ 6*, in our calculation of the posterior. The curvature, H, of pg matches

that of p(0|y, ¢).

The here discussed strategy was first proposed by (Tierney & Kadane, 1986), who showed that,
under certain regularity conditions, the error of the approximation is given by:

p(0ly, ¢) = pg(0)(1 + O(n™%))



where n is the number of observations. Note the error is relative, and furthermore the rate of con-
vergence is a factor n larger than what we get from the central limit theorem. The above-mentioned
regularity conditions apply, among other cases, when y follows a normal, Poisson, binomial, or
negative-binomial distribution.

The main benefit of using a Laplace approximation is that the Markov chain only explores the
parameter space of ¢, as opposed to the joint space of ¢ and 6. But finding the mode, 6*, comes
at a significant cost, as this requires solving a high-dimensional algebraic equation. This trade-off
informs which models and regime the approximation works best.

1.1 Calculating the approximate Posterior

The mode, 6%, is found with a numerical solver. The curvature H is evaluated either analytically
or numerically, depending on the difficulty of the problem. In both cases, the details depend on
the specifics of the model, in particular the distribution p(y|6, ¢). As an example, I work out the
objective function we need to optimize when fitting a log poisson model with a latent Gaussian
parameter in section 1.2.

But first, let us derive some more general results.

‘H may be found using the following lemma:
Lemma 1. Let H be the Hessian of p(0y, ¢) at = 0*. Then

_ -1
H=2,"+H
where H is the Hessian of log p(0|y, ¢) at 6 = 6*.

Proof. Work out proof. O

Our Laplace approximation is then

pc(0) = Normal(0*, (S, + H) ™)

We can then explicitly write the multivariate Gaussian distributions in our approximation of the
posterior (equation 1):
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p(l9) (27Tdet|2¢ > xp < 2 ¢ )

and

* _ 1 : _1 * —1 *
pa(67) = <2wdet(E;1+H)—1|) eXp( S0 0TS, H) (0 9))

1 » H

where we used the approximation 6 = 6* and the fact that, for an invertible matrix A, det|A
(det|A|)~*. Combining all our results, the approximate posterior becomes

~ « PO"[9)

p(oly) =~ p(o)p(ylo ’¢)pg(9*)
= * 1 : _1 *Ty—1p*
= p(9)p(y|0”,¢) <det|2¢|det2;1+ﬂ|> eXp< AR 9)

or on the log scale

1 — * — *
log p(dly) = log p(¢) + log p(y|6*, ) — 3 (logdet|2¢| + logdet|2¢1 +H|+6 T2¢19 )



1.2 Log Poisson model with latent Gaussian parameter

To test the performance of the Laplace approximation, I construct a computer experiment in which
a full Bayesian inference is performed on the following model:

¢~  Normal(0,2)
6 ~ Normal(0,Xy) )
Yjegi) ~ Poisson(e?)
where ¥ is a diagonal covariance matrix, which deterministically depends on ¢.

To apply the Laplace approximation we first need to find the mode of p(6|6,y). Applying Bayes’
rule:

p(0ly, ¢) o< p(ylo, ¢)p(0]¢) 3)

By equation 2, the right hand side is a product of poisson and normal distributions. Since our goal
is to find the mode, i.e. is optimize the function for 6, we can ignore normalizing constants. Let

m; = Z 1
jeg(i)
S = Z Yj
j€g(i)
respectively the total number of terms and the total number of counts in the i" group. Then, on the
log scale, the objective function is:

f(0) = {Z?; Si0; — 601} — %F)TE*IG 4)

Using the fact ¥ ! is symmetric, the gradient is then:

ViO)=V-%10 6)
where V; = S; — m;e%.
Noting the normalizing constant can be dropped in the log scale, the Hessian H is easily worked out
from equation 5 to be

HO)=wW-x!

where W is a diagonal matrix with W; = —m,e? . The log posterior is thus:
1
log p(ly) ~ log p(@) +1ogp(y16",6) — 5 (log det|Zy| + log det|H| + 670" )

As a starting point, we consider the case where X is a diagonal matrix with entries o; = ¢*. Then
equation 4 becomes:

M | M
logp(0ly, ¢) = z; (Sif; — %) — 252 293
i= i=
and the gradient and the hessian are:
88@ logp(bsly, ¢) = S; —me?s — %
;);? logp(0ily. @) = —mie’ — %

Note these partial derivatives fully define the gradient and the Hessian, as the 6;’s are uncorrelated.
The corresponding log posterior is then

M
% 1 * * - *
log p(¢ly) ~ logp(9) +logp(y|6*, ¢) — 5 (M logo® + > (logmi +6;) + 675,10 )
i=1
which seems wrong.

In the more general case, we need to worry about off-diagonal terms and use linear algebra operators
which can take advantage of matrix sparsity.
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