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1 Estimating Posteriors for Latent Gaussian Models

Latent Gaussian models are a popular class of models and typically have the following hierarchical
structure:

φ ∼ π(φ)

θi ∼ Normal(0,Σφ)−1)

yj∈g(i) ∼ p(θi, φ)

where φ is a global parameter and θ a local parameter. The observations yj belong to local groups
indexed by g(i) and follow distributions parametrized by θi. In this article, I focus on the common
case where φ is low dimensional and θ high dimensional.

Our goal is to make inference about φ. In a Bayesian setting, this amounts to computing the poste-
rior:

p(φ|y) =
p(φ, y)

p(y)

=
p(φ, y)p(θ|φ, y)

p(y)p(θ|φ, y)

=
p(φ, θ, y)

p(θ|y, φ)p(y)

∝ p(y|θ, φ)p(θ|φ)p(φ)

p(θ|y, φ)

(1)

The model gives us the terms in the nominator but not in the denominator. A straightforward way
to tackle this is to do a full Bayesian inference on both φ and θ. However, doing so significantly
increases the dimension of our model’s parameter space.

The alternative approach is to perform inference on φ only, and approximate the conditional density
in the denominator as a Gaussian density. That is

p(θ|y, φ) ≈ pG(θ)

where pG is a normal density centered at the mode of p(θ|y, φ), which we denote θ∗. Moreover, we
use the approximation, θ ≈ θ∗, in our calculation of the posterior. The curvature, H, of pG matches
that of p(θ|y, φ).

The here discussed strategy was first proposed by (Tierney & Kadane, 1986), who showed that,
under certain regularity conditions, the error of the approximation is given by:

p(θ|y, φ) = pG(θ)(1 +O(n−
3
2 ))



where n is the number of observations. Note the error is relative, and furthermore the rate of con-
vergence is a factor n larger than what we get from the central limit theorem. The above-mentioned
regularity conditions apply, among other cases, when y follows a normal, Poisson, binomial, or
negative-binomial distribution.

The main benefit of using a Laplace approximation is that the Markov chain only explores the
parameter space of φ, as opposed to the joint space of φ and θ. But finding the mode, θ∗, comes
at a significant cost, as this requires solving a high-dimensional algebraic equation. This trade-off
informs which models and regime the approximation works best.

1.1 Calculating the approximate Posterior

The mode, θ∗, is found with a numerical solver. The curvature H is evaluated either analytically
or numerically, depending on the difficulty of the problem. In both cases, the details depend on
the specifics of the model, in particular the distribution p(y|θ, φ). As an example, I work out the
objective function we need to optimize when fitting a log poisson model with a latent Gaussian
parameter in section 1.2.

But first, let us derive some more general results.

H may be found using the following lemma:
Lemma 1. LetH be the Hessian of p(θ|y, φ) at θ = θ∗. Then

H = Σ−1φ +H

where H is the Hessian of log p(θ|y, φ) at θ = θ∗.

Proof. Work out proof.

Our Laplace approximation is then

pG(θ) = Normal(θ∗, (Σ−1φ +H)−1)

We can then explicitly write the multivariate Gaussian distributions in our approximation of the
posterior (equation 1):

p(θ|φ) =

(
1

2πdet|Σφ|

) 1
2

exp

(
−1

2
θ∗TΣ−1φ θ∗

)
and

pG(θ∗) =

(
1

2πdet|(Σ−1φ +H)−1|

) 1
2

exp

(
−1

2
(θ∗ − θ∗)T (Σ−1φ +H)(θ∗ − θ∗)

)

=

(
1

2π
det|Σ−1φ +H|

) 1
2

where we used the approximation θ ≈ θ∗ and the fact that, for an invertible matrix A, det|A−1| =
(det|A|)−1. Combining all our results, the approximate posterior becomes

p(φ|y) ≈ p(φ)p(y|θ∗, φ)
p(θ∗|φ)

pG(θ∗)

= p(φ)p(y|θ∗, φ)

(
1

det|Σφ|det|Σ−1φ +H|

) 1
2

exp

(
−1

2
θ∗TΣ−1φ θ∗

)
or on the log scale

log p(φ|y) ≈ log p(φ) + log p(y|θ∗, φ)− 1

2

(
log det|Σφ|+ log det|Σ−1φ +H|+ θ∗TΣ−1φ θ∗

)
2



1.2 Log Poisson model with latent Gaussian parameter

To test the performance of the Laplace approximation, I construct a computer experiment in which
a full Bayesian inference is performed on the following model:

φ ∼ Normal(0, 2)

θ ∼ Normal(0,Σφ)

yj∈g(i) ∼ Poisson(eθi)

(2)

where Σφ is a diagonal covariance matrix, which deterministically depends on φ.

To apply the Laplace approximation we first need to find the mode of p(θ|θ, y). Applying Bayes’
rule:

p(θ|y, φ) ∝ p(y|θ, φ)p(θ|φ) (3)
By equation 2, the right hand side is a product of poisson and normal distributions. Since our goal
is to find the mode, i.e. is optimize the function for θ, we can ignore normalizing constants. Let

mi =
∑
j∈g(i)

1

Si =
∑
j∈g(i)

yj

respectively the total number of terms and the total number of counts in the ith group. Then, on the
log scale, the objective function is:

f(θ) =
{∑M

i=1 Siθi − eθi
}
− 1

2θ
TΣ−1θ (4)

Using the fact Σ−1 is symmetric, the gradient is then:
∇f(θ) = V − Σ−1θ (5)

where Vi = Si −mie
θi .

Noting the normalizing constant can be dropped in the log scale, the Hessian H is easily worked out
from equation 5 to be

H(θ) =W − Σ−1

whereW is a diagonal matrix withWi = −mie
θi . The log posterior is thus:

log p(φ|y) ≈ log p(φ) + log p(y|θ∗, φ)− 1

2

(
log det|Σφ|+ log det|H|+ θ∗Tσ−1φ θ∗

)
As a starting point, we consider the case where Σφ is a diagonal matrix with entries σi = φ2. Then
equation 4 becomes:

log p(θ|y, φ) =

M∑
i=1

(
Siθi − eθi

)
− 1

2φ2

M∑
i=1

θ2i

and the gradient and the hessian are:
∂

∂θi
log p(θi|y, φ) = Si −mie

θi − θi
φ2

∂2

∂θ2i
log p(θi|y, φ) = −mie

θi − 1

φ2

Note these partial derivatives fully define the gradient and the Hessian, as the θi’s are uncorrelated.
The corresponding log posterior is then

log p(φ|y) ≈ log p(φ) + log p(y|θ∗, φ)− 1

2

(
M log σ2 +

M∑
i=1

(logmi + θ∗i ) + θ∗Tσ−1φ θ∗

)
which seems wrong.

In the more general case, we need to worry about off-diagonal terms and use linear algebra operators
which can take advantage of matrix sparsity.
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