Math Appendix

Charles C. Margossian
charles.margossian@columbia.edu

1 Estimating Posteriors for Latent Gaussian Models

Latent Gaussian models are a popular class of models and typically have the following hierarchical structure:

$$
\begin{aligned}
\phi & \sim \pi(\phi) \\
\theta_{i} & \left.\sim \operatorname{Normal}\left(0, \Sigma_{\phi}\right)^{-1}\right) \\
y_{j \in g(i)} & \sim p\left(\theta_{i}, \phi\right)
\end{aligned}
$$

where ϕ is a global parameter and θ a local parameter. The observations y_{j} belong to local groups indexed by $g(i)$ and follow distributions parametrized by θ_{i}. In this article, I focus on the common case where ϕ is low dimensional and θ high dimensional.

Our goal is to make inference about ϕ. In a Bayesian setting, this amounts to computing the posterior:

$$
\begin{align*}
p(\phi \mid y) & =\frac{p(\phi, y)}{p(y)} \\
& =\frac{p(\phi, y) p(\theta \mid \phi, y)}{p(y) p(\theta \mid \phi, y)} \tag{1}\\
& =\frac{p(\phi, \theta, y)}{p(\theta \mid y, \phi) p(y)} \\
& \propto \frac{p(y \mid \theta, \phi) p(\theta \mid \phi) p(\phi)}{p(\theta \mid y, \phi)}
\end{align*}
$$

The model gives us the terms in the nominator but not in the denominator. A straightforward way to tackle this is to do a full Bayesian inference on both ϕ and θ. However, doing so significantly increases the dimension of our model's parameter space.

The alternative approach is to perform inference on ϕ only, and approximate the conditional density in the denominator as a Gaussian density. That is

$$
p(\theta \mid y, \phi) \approx p_{\mathcal{G}}(\theta)
$$

where $p_{\mathcal{G}}$ is a normal density centered at the mode of $p(\theta \mid y, \phi)$, which we denote θ^{*}. Moreover, we use the approximation, $\theta \approx \theta^{*}$, in our calculation of the posterior. The curvature, \mathcal{H}, of $p_{\mathcal{G}}$ matches that of $p(\theta \mid y, \phi)$.
The here discussed strategy was first proposed by (Tierney \& Kadane, 1986), who showed that, under certain regularity conditions, the error of the approximation is given by:

$$
p(\theta \mid y, \phi)=p_{\mathcal{G}}(\theta)\left(1+\mathcal{O}\left(n^{-\frac{3}{2}}\right)\right)
$$

where n is the number of observations. Note the error is relative, and furthermore the rate of convergence is a factor n larger than what we get from the central limit theorem. The above-mentioned regularity conditions apply, among other cases, when y follows a normal, Poisson, binomial, or negative-binomial distribution.
The main benefit of using a Laplace approximation is that the Markov chain only explores the parameter space of ϕ, as opposed to the joint space of ϕ and θ. But finding the mode, θ^{*}, comes at a significant cost, as this requires solving a high-dimensional algebraic equation. This trade-off informs which models and regime the approximation works best.

1.1 Calculating the approximate Posterior

The mode, θ^{*}, is found with a numerical solver. The curvature \mathcal{H} is evaluated either analytically or numerically, depending on the difficulty of the problem. In both cases, the details depend on the specifics of the model, in particular the distribution $p(y \mid \theta, \phi)$. As an example, I work out the objective function we need to optimize when fitting a \log poisson model with a latent Gaussian parameter in section 1.2.
But first, let us derive some more general results.
\mathcal{H} may be found using the following lemma:
Lemma 1. Let \mathcal{H} be the Hessian of $p(\theta \mid y, \phi)$ at $\theta=\theta^{*}$. Then

$$
\mathcal{H}=\Sigma_{\phi}^{-1}+H
$$

where H is the Hessian of $\log p(\theta \mid y, \phi)$ at $\theta=\theta^{*}$.
Proof. Work out proof.
Our Laplace approximation is then

$$
p_{G}(\theta)=\operatorname{Normal}\left(\theta^{*},\left(\Sigma_{\phi}^{-1}+H\right)^{-1}\right)
$$

We can then explicitly write the multivariate Gaussian distributions in our approximation of the posterior (equation 1):

$$
p(\theta \mid \phi)=\left(\frac{1}{2 \pi \operatorname{det}\left|\Sigma_{\phi}\right|}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2} \theta^{* T} \Sigma_{\phi}^{-1} \theta^{*}\right)
$$

and

$$
\begin{aligned}
p_{G}\left(\theta^{*}\right) & =\left(\frac{1}{2 \pi \operatorname{det}\left|\left(\Sigma_{\phi}^{-1}+H\right)^{-1}\right|}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2}\left(\theta^{*}-\theta^{*}\right)^{T}\left(\Sigma_{\phi}^{-1}+H\right)\left(\theta^{*}-\theta^{*}\right)\right) \\
& =\left(\frac{1}{2 \pi} \operatorname{det}\left|\Sigma_{\phi}^{-1}+H\right|\right)^{\frac{1}{2}}
\end{aligned}
$$

where we used the approximation $\theta \approx \theta^{*}$ and the fact that, for an invertible matrix A, $\operatorname{det}\left|A^{-1}\right|=$ $(\operatorname{det}|A|)^{-1}$. Combining all our results, the approximate posterior becomes

$$
\begin{aligned}
p(\phi \mid y) & \approx p(\phi) p\left(y \mid \theta^{*}, \phi\right) \frac{p\left(\theta^{*} \mid \phi\right)}{p_{G}\left(\theta^{*}\right)} \\
& =p(\phi) p\left(y \mid \theta^{*}, \phi\right)\left(\frac{1}{\operatorname{det}\left|\Sigma_{\phi}\right| \operatorname{det}\left|\Sigma_{\phi}^{-1}+H\right|}\right)^{\frac{1}{2}} \exp \left(-\frac{1}{2} \theta^{* T} \Sigma_{\phi}^{-1} \theta^{*}\right)
\end{aligned}
$$

or on the log scale
$\log p(\phi \mid y) \approx \log p(\phi)+\log p\left(y \mid \theta^{*}, \phi\right)-\frac{1}{2}\left(\log \operatorname{det}\left|\Sigma_{\phi}\right|+\log \operatorname{det}\left|\Sigma_{\phi}^{-1}+H\right|+\theta^{* T} \Sigma_{\phi}^{-1} \theta^{*}\right)$

1.2 Log Poisson model with latent Gaussian parameter

To test the performance of the Laplace approximation, I construct a computer experiment in which a full Bayesian inference is performed on the following model:

$$
\begin{array}{rr}
\phi & \sim \operatorname{Normal}(0,2) \\
\theta & \sim \operatorname{Normal}\left(0, \Sigma_{\phi}\right) \tag{2}\\
y_{j \in g(i)} & \sim \\
\operatorname{Poisson}\left(e^{\theta_{i}}\right)
\end{array}
$$

where Σ_{ϕ} is a diagonal covariance matrix, which deterministically depends on ϕ.
To apply the Laplace approximation we first need to find the mode of $p(\theta \mid \theta, y)$. Applying Bayes’ rule:

$$
\begin{equation*}
p(\theta \mid y, \phi) \propto p(y \mid \theta, \phi) p(\theta \mid \phi) \tag{3}
\end{equation*}
$$

By equation 2, the right hand side is a product of poisson and normal distributions. Since our goal is to find the mode, i.e. is optimize the function for θ, we can ignore normalizing constants. Let

$$
\begin{aligned}
m_{i} & =\sum_{j \in g(i)} 1 \\
S_{i} & =\sum_{j \in g(i)} y_{j}
\end{aligned}
$$

respectively the total number of terms and the total number of counts in the $i^{\text {th }}$ group. Then, on the \log scale, the objective function is:

$$
\begin{equation*}
f(\theta)=\left\{\sum_{i=1}^{M} S_{i} \theta_{i}-e^{\theta_{i}}\right\}-\frac{1}{2} \theta^{T} \Sigma^{-1} \theta \tag{4}
\end{equation*}
$$

Using the fact Σ^{-1} is symmetric, the gradient is then:

$$
\begin{equation*}
\nabla f(\theta)=\mathcal{V}-\Sigma^{-1} \theta \tag{5}
\end{equation*}
$$

where $\mathcal{V}_{i}=S_{i}-m_{i} e^{\theta_{i}}$.
Noting the normalizing constant can be dropped in the log scale, the Hessian H is easily worked out from equation 5 to be

$$
H(\theta)=\mathcal{W}-\Sigma^{-1}
$$

where \mathcal{W} is a diagonal matrix with $\mathcal{W}_{i}=-m_{i} e^{\theta_{i}}$. The log posterior is thus:

$$
\log p(\phi \mid y) \approx \log p(\phi)+\log p\left(y \mid \theta^{*}, \phi\right)-\frac{1}{2}\left(\log \operatorname{det}\left|\Sigma_{\phi}\right|+\log \operatorname{det}|H|+\theta^{* T} \sigma_{\phi}^{-1} \theta^{*}\right)
$$

As a starting point, we consider the case where Σ_{ϕ} is a diagonal matrix with entries $\sigma_{i}=\phi^{2}$. Then equation 4 becomes:

$$
\log p(\theta \mid y, \phi)=\sum_{i=1}^{M}\left(S_{i} \theta_{i}-e^{\theta_{i}}\right)-\frac{1}{2 \phi^{2}} \sum_{i=1}^{M} \theta_{i}^{2}
$$

and the gradient and the hessian are:

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i}} \log p\left(\theta_{i} \mid y, \phi\right) & =S_{i}-m_{i} e^{\theta_{i}}-\frac{\theta_{i}}{\phi^{2}} \\
\frac{\partial^{2}}{\partial \theta_{i}^{2}} \log p\left(\theta_{i} \mid y, \phi\right) & =-m_{i} e^{\theta_{i}}-\frac{1}{\phi^{2}}
\end{aligned}
$$

Note these partial derivatives fully define the gradient and the Hessian, as the θ_{i} 's are uncorrelated. The corresponding log posterior is then

$$
\log p(\phi \mid y) \approx \log p(\phi)+\log p\left(y \mid \theta^{*}, \phi\right)-\frac{1}{2}\left(M \log \sigma^{2}+\sum_{i=1}^{M}\left(\log m_{i}+\theta_{i}^{*}\right)+\theta^{* T} \sigma_{\phi}^{-1} \theta^{*}\right)
$$

which seems wrong.
In the more general case, we need to worry about off-diagonal terms and use linear algebra operators which can take advantage of matrix sparsity.

References

Tierney, L., \& Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82-86. Retrieved from https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1986.10478240 doi: 10.1080/01621459.1986.10478240

