
Predator: Canadian lynx
© 2009, Keith Williams, CC-BY 2.0

Prey: snowshoe hare
© 2013, D. Gordon E. Robinson, CC-BY SA 3.0

Estimating Lotka-Volterra Predator-
Prey Dynamics with Stan
Bob Carpenter

October 16, 2017

Abstract

The Lotka-Volterra equations define parametric
differential equations for the fluctuation of predator
and prey populations. To estimate the parameters of
such a model, a model for measurement error and
unexplained variation is layered on top of the
deterministic dynamics. The model is coded in Stan
and fit to data on Canadian lynxes and snowshoe
hares based on numbers of pelts collected in the early
20th century by the Hudson Bay Company.

Lynxes and Hares, 1900-
1920
The Hudson Bay Company recorded the number of
captured pelts of two species between 1900 and 1920,

snowshoe hares

(https://en.wikipedia.org/wiki/Snowshoe_hare), an hervivorous cousin of rabbits, and

Canadian lynxes (https://en.wikipedia.org/wiki/Canada_lynx), a feline predator whose
diet consists almost exclusively of hares.

The date provided here was converted to comma-separated value (CSV) format from (Howard
2009).

https://en.wikipedia.org/wiki/Snowshoe_hare
https://en.wikipedia.org/wiki/Canada_lynx

lynx_hare_df <-
 read.csv("hudson-bay-lynx-hare.csv", comment.char="#")
head(lynx_hare_df, n = 3)

Year Lynx Hare
1 1900 4.0 30.0
2 1901 6.1 47.2
3 1902 9.8 70.2

The number of pelts taken by the Hudson Bay Company is shown over time as follows (first,
the data is melted using the reshape package, then plotted by species using ggplot).

lynx_hare_melted_df <- melt(as.matrix(lynx_hare_df[, 2:3]))
colnames(lynx_hare_melted_df) <- c("year", "species", "pelts")
lynx_hare_melted_df$year <-
 lynx_hare_melted_df$year +
 rep(1899, length(lynx_hare_melted_df$year))
head(lynx_hare_melted_df, n=3)

year species pelts
1 1900 Lynx 4.0
2 1901 Lynx 6.1
3 1902 Lynx 9.8

tail(lynx_hare_melted_df, n=3)

year species pelts
40 1918 Hare 14.6
41 1919 Hare 16.2
42 1920 Hare 24.7

population_plot2 <-
 ggplot(data = lynx_hare_melted_df,
 aes(x = year, y = pelts, color = species)) +
 geom_line() +
 geom_point() +
 ylab("pelts (thousands)")
population_plot2

This plot makes it clear that the spikes in the lynx population lag those in the hare population.
In both populations, the periodicity appears to be somewhere in the neighborhood of ten to
twelve years.

Volterra (1926) plotted the temporal dynamics of predator and prey populations using an axis
for each species and then plotting the temporal course as a line. The result for the lynx and
hare population is easily plotted from the original data frame.

population_plot1 <-
 ggplot(data = lynx_hare_df,
 aes(x = Lynx, y = Hare, color = Year)) +
 geom_path() +
 geom_point() +
 xlab("lynx pelts (thousands)") +
 ylab("hare pelts (thousands)")
population_plot1

As can be seen from the diagram, the population dynamics orbit in an apparently stable
pattern.

The Lotka-Volterra Equations
The Lotka-Volterra equations (Volterra 1926, 1927; Lotka 1925) are based on the assumptions
that

the predator population intrinsically shrinks,

the prey population intrinsically grows,

larger prey population leads to larger predator population, and

larger predator population leads to smaller prey populations.

Together, these dynamics lead to a cycle of rising and falling populations. With a low lynx
population, the hare population grows. As the hare population grows, it allows the lynx
population to grow. Eventually, the lynx population is large enough to start cutting down on
the hare population. That in turn puts downward pressure on the lynx population. The cycle
then resumes from where it started.

The Lotka-Volterra equations (Volterra 1926, 1927; Lotka 1925) are a pair of first-order
differential equations describing the population dynamics of a pair of species, one predator
and one prey Suppose that

 is the population size of the prey species at time , and

 is the population size of the predator species.

Volterra modeled the temporal dynamics of the two species (i.e., population sizes over times)
in terms of four parameters, , as

As usual in writing differential equations, and are rendered as and to simplify
notation.

Error model: measurement and unexplained
variation
The Lotka-Volterra model is deterministic. Given the system parameters and the initial
conditions, the population dynamics are fully determined. We will specify a statistical model
that allows us to infer the parameters of the model and predict future population dynamics
based on noisy measurements and a model that does not explain all of the observed variation
in the data. We will consider two sources of error.

First, the theory is not expected to be that good in this case, so there will be resulting
unexplained variation. For example, the weather in a particular year is going to have an impact
on the populations, but it is not taken into account, leading to variation that is not explained
by the model.

The second source of error is noisy measurements of the population. We cannot measure the
population directly, so instead make do with noisy measurements, such as the number of pelts
collected. In more elaborate models (beyond what we consider here), measurements of pelts
collected could be supplemented with output of other measurements, such as mark-recapture
studies.

A linear regression analogy

Like a simple linear regression, or non-linear GLM, the trick is to treat the underlying
determinstic model as providing a value which is expected to have error from both
measurement and unexplained variance due to the simplifications in the scientific model.
Consider the typical formulation of a linear regression, where is the scalar outcome, is a
row vector of predictors, is a coefficient vector parameter, and is a latent scalar parameter
and is another parameter,

u(t) ≥ 0 t

v(t) ≥ 0

α, β, γ, δ > 0

ud
dt

vd
dt

=

=

(α − βv)u

(−γ + δ u) v

=

=

αu − βuv

−γv + δuv

u(t) v(t) u v

yn xn
β ϵn

σ > 0

yn

ϵn

=

∼

β +xn ϵn

Normal(0, σ)

The deterministic part of the equation is the linear predictor . The stochastic error term, ,
gets a normal distribution located at zero with scale parameter (this error model
ensures that the maximum likelihood value for is at the least squares solution). We can
alternatively write this model without the latent value as

Here, is implicit.

Noise model for Lotka-Volterra dynamics

The data consists of measurements of the prey and predator populations at times .
The Lotka-Volterra equations will replace the determinsitic parts of the linear regression
equations.

The true population sizes at time are unknown—we only have measurements and
 for it. The true population initial population sizes at time will be represented by a

parameter , so that

Next, let be the solutions to the Lotka-Volterra differential equations at times
 given initial conditions . Each is a pair of prey and predator

population sizes at the specified times,

The are deterministic functions of and the system parameters ; thus is not a
parameter but a derived quantity.

The observed data is the form of measurements of the initial population of prey and
predators, and subsequent measurements at times , where and the consist of a pair
of measured population sizes, for the prey and predator species.

Putting this together, the (and) are measurements of the underlying predicted
population (). Because they are positive, the noise will be modeled on the log scale. This
has the convenient side effect of making the error multiplicative (i.e., proportional) rather than
additive.

where the are the solutions to the Lotka-Volterra equations at times given initial
population . The prey and predator populations have error scales (on the log scale) of and

.

Weakly informative priors

xβ ϵn
σ > 0

β
ϵn

∼ Normal(β, σ).yn xn

= − βϵn yn xn

yi yi,1 yi,2 ti

t = 0 y01
y02 t = 0

z0

z = u(t = 0) and z = v(t = 0).01 02

, … ,z1 zN
, … ,t1 tN z(t = 0) = z0 zn

= u() and = v()zn,1 tn zn,2 tn

zn z0 α, β, γ, δ z

y0
yn tn y0 yn

yn y0
zn z0

log yn,k

ϵn,k

=

∼

log +zn,k ϵn,k

Normal(0,)σk

zn , … ,t1 tN
z0 σ1

σ2

The only remaining question is what to use for priors on the parameters. In general, the Stan
Development Team has been recommending at least weakly informative priors. In practice,
the parameter ranges for the Lotka-Volterra model leading to stable populations are well
known.

For the parameters,

The noise scale is proportional, so the following prior should be weakly informative,

Then, for the initial population of predator and prey, the following priors are weakly
informative

Coding the model in Stan
Coding the system dynamics

Whenever a system of differential equations is involved, the system equations must be coded
as a Stan function. In this case, the model is relatively simple as the state is only two
dimensional and there are only four parameters. Stan requires the system to be defined with
exactly the signature defined here for the function dz_dt() . The first argument is for time,
which is not used here because the Lotka-Voltarra equations are not time-dependent. The
second argument is for the system state, and here it is coded as an array . The third
argument is for the parameters of the equation, of which the Lotka-Voltarra equations have
four, which are coded as . The fourth and fifth argument are for data constants,
but none areneeded here, so these arguments are unused.

α, γ

β, δ

∼

∼

Normal(1, 0.5)

Normal(0.05, 0.05)

σ ∼ Lognormal(0, 0.5)

z0,1

z0,2

∼

∼

Normal(log(30), 1)

Normal(log(5), 1)

z = (u, v)

θ = (α, β, γ, δ)

 real[] dz_dt(real t, // time (unused)
 real[] z, // system state
 real[] theta, // parameters
 real[] x_r, // data (unused)
 int[] x_i) {
 real u = z[1];
 real v = z[2];

 real alpha = theta[1];
 real beta = theta[2];
 real gamma = theta[3];
 real delta = theta[4];

 real du_dt = (alpha - beta * v) * u;
 real dv_dt = (-gamma + delta * u) * v;

 return { du_dt, dv_dt };
 }

After unpacking the variables from their containers, the derivatives of population with respect
to time are defined just as in the mathematical specification. The return value uses braces to
construct the two-element array to return, which consists of the derivatives of the system
components with respect to time,

The data and parameters are coded following their specifications.

data {
 int<lower = 0> N; // num measurements
 real ts[N]; // measurement times > 0
 real y0[2]; // initial measured population
 real<lower = 0> y[N, 2]; // measured population at measurement times
}
parameters {
 real<lower = 0> theta[4]; // theta = { alpha, beta, gamma, delta }
 real<lower = 0> z0[2]; // initial population
 real<lower = 0> sigma[2]; // measurement errors
}

The solutions to the Lotka-Volterra equations for a given initial state are coded up as
transformed parameters. This will allow them to be used in the model and inspected in the
output. It also makes it clear that they are all functions of the initial population and
parameters (as well as the solution times).

z = (u, v) = (u, v) .d
dt

d
dt

d
dt

d
dt

z0

transformed parameters {
 // population for remaining years
 real z[N, 2]
 = integrate_ode_rk45(dz_dt, z0, 0, ts, theta,
 rep_array(0.0, 0), rep_array(0, 0),
 1e-6, 1e-5, 1e3);
}

The Runge-Kutta 4th/5th-order solver is specified here for efficiency (with suffix _rk45)
because the equations are not stiff in the parameter ranges encountered for this data. The
required real and integer data arguments in the second line are both given as size-zero arrays.
The last line provides relative and absolute tolerances, along with the maximum number of
steps allowed in the solver. For further efficiency, the tolerances for the differential equation
solver are relatively loose for this example; usually tighter tolerances are required (smaller
numbers).

If the solver runs into stiffness (the symptom of which is very slow iterations that may appear
to be hanging), it is best to switch to the backward-differentiation formula solver, called with
integrate_ode_bdf . The Runge-Kutta solver is twice as fast as the BDF solver for this

problem on this data.

With the solutions in hand, the only thing left are the prior and likelihood. As with the other
parts of the model, these directly follow the notation in the mathematical specification of the
model.

model {
 // priors
 sigma ~ normal(0, 0.5);
 theta[1:2] ~ normal(0, 1);
 theta[3:4] ~ normal(0, 0.2);
 z0[1] ~ normal(10, 10);
 z0[2] ~ normal(50, 50);

 // likelihood
 y0 ~ lognormal(log(z0), sigma);
 for (k in 1:2)
 y[, k] ~ lognormal(log(z[, k]), sigma[k]);
}

Fitting the Hudson Bay Company lynx-hare
data
First, the data is setup in a form suitable for Stan.

N <- length(lynx_hare_df$Year) - 1 # num observations
after first

ts <- 1:N # observation time
s just years

y0 <- c(lynx_hare_df$Hare[1], lynx_hare_df$Lynx[1]) # first observatio
n

y <- as.matrix(lynx_hare_df[2:(N + 1), 2:3]) # remaining observ
ations

y <- cbind(y[, 2], y[, 1]); # reverse order
lynx_hare_data <- list(N, ts, y0, y)

Next, the model is translated to C++ and compiled.

model <- stan_model("lotka-volterra.stan")

Finally, the compiled model and data are used for sampling. Stan’s default settings are
sufficient for this data set and model.

fit <- sampling(model, data = lynx_hare_data,
 seed=123)

The output can be displayed in tabular form, here limited to the median (0.5 quantile) and
80% interval (0.1 and 0.9 quantiles).

print(fit, probs=c(0.1, 0.5, 0.9), digits=3)

Inference for Stan model: lotka-volterra.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 10% 50% 90% n_eff Rhat
theta[1] 0.546 0.002 0.074 0.456 0.543 0.644 994 1.000
theta[2] 0.028 0.000 0.005 0.022 0.027 0.035 1211 1.001
theta[3] 0.805 0.004 0.109 0.675 0.797 0.942 940 1.001
theta[4] 0.024 0.000 0.004 0.019 0.024 0.030 968 1.002
z0[1] 34.231 0.065 3.452 30.122 34.012 38.565 2862 1.003
z0[2] 5.906 0.012 0.612 5.167 5.885 6.698 2558 1.001
sigma[1] 0.290 0.001 0.054 0.228 0.284 0.361 2685 1.000
sigma[2] 0.295 0.001 0.055 0.231 0.287 0.370 2461 1.001
z[1,1] 49.597 0.130 5.457 43.257 49.159 56.512 1752 1.003
z[1,2] 7.156 0.012 0.755 6.246 7.109 8.098 4000 1.000
z[2,1] 66.030 0.213 8.131 56.476 65.388 76.265 1454 1.002
z[2,2] 12.857 0.027 1.699 10.806 12.781 15.030 4000 0.999
z[3,1] 65.681 0.192 8.258 55.751 65.180 76.195 1841 1.000

z[3,2] 29.338 0.069 4.100 24.370 29.093 34.587 3543 0.999
z[4,1] 38.468 0.076 4.800 32.707 38.213 44.680 4000 0.999
z[4,2] 46.566 0.126 6.082 39.175 46.227 54.242 2323 1.000
z[5,1] 19.320 0.033 2.116 16.812 19.177 21.944 4000 1.001
z[5,2] 40.318 0.104 4.988 34.309 40.021 46.666 2288 1.001
z[6,1] 13.389 0.027 1.388 11.735 13.305 15.124 2611 1.001
z[6,2] 26.323 0.050 2.744 23.054 26.147 29.861 3065 1.002
z[7,1] 13.005 0.029 1.334 11.402 12.959 14.677 2166 1.001
z[7,2] 16.099 0.024 1.472 14.281 16.049 17.986 3833 1.002
z[8,1] 15.701 0.030 1.464 13.922 15.643 17.507 2323 1.001
z[8,2] 10.158 0.020 0.944 8.973 10.159 11.351 2337 1.001
z[9,1] 21.395 0.029 1.700 19.280 21.341 23.525 3443 1.000
z[9,2] 7.086 0.016 0.708 6.187 7.070 8.001 1966 1.001
z[10,1] 30.908 0.040 2.347 28.039 30.782 33.996 3415 1.000
z[10,2] 5.914 0.013 0.615 5.159 5.904 6.697 2143 1.001
z[11,1] 45.128 0.095 4.173 40.153 44.832 50.381 1941 1.000
z[11,2] 6.534 0.013 0.706 5.700 6.496 7.440 3018 1.001
z[12,1] 62.320 0.186 7.288 53.603 61.764 71.685 1528 1.000
z[12,2] 10.567 0.021 1.291 8.994 10.490 12.200 3660 1.001
z[13,1] 69.037 0.216 8.680 58.708 68.317 79.964 1617 1.001
z[13,2] 23.704 0.052 3.305 19.701 23.447 28.095 4000 1.001
z[14,1] 46.260 0.108 5.812 39.360 45.895 53.749 2905 1.002
z[14,2] 44.030 0.113 5.872 36.996 43.621 51.529 2693 1.000
z[15,1] 22.714 0.046 2.816 19.290 22.512 26.362 3810 1.001
z[15,2] 43.623 0.119 5.531 36.982 43.316 50.678 2175 1.000
z[16,1] 14.244 0.029 1.552 12.348 14.169 16.235 2815 1.000
z[16,2] 29.839 0.064 3.370 25.767 29.626 34.177 2808 1.000
z[17,1] 12.794 0.028 1.322 11.218 12.743 14.473 2220 1.001
z[17,2] 18.362 0.029 1.846 16.122 18.260 20.749 4000 1.000
z[18,1] 14.751 0.030 1.493 12.957 14.677 16.638 2472 1.002
z[18,2] 11.419 0.018 1.114 10.039 11.380 12.844 4000 1.000
z[19,1] 19.623 0.031 1.952 17.218 19.521 22.124 4000 1.001
z[19,2] 7.708 0.016 0.758 6.775 7.680 8.691 2328 1.000
z[20,1] 28.066 0.046 2.930 24.549 27.865 31.825 4000 1.000
z[20,2] 6.091 0.013 0.606 5.344 6.062 6.891 2066 1.000
y0_rep[1] 35.609 0.180 11.388 22.875 33.948 50.712 4000 1.000
y0_rep[2] 6.185 0.032 1.980 4.014 5.885 8.793 3717 1.000
y_rep[1,1] 51.722 0.273 16.758 33.010 49.157 72.395 3756 1.000
y_rep[1,2] 7.445 0.040 2.528 4.766 7.059 10.508 4000 0.999
y_rep[2,1] 68.432 0.394 22.962 43.011 64.949 96.851 3403 1.000
y_rep[2,2] 13.385 0.071 4.505 8.488 12.717 19.067 4000 1.000
y_rep[3,1] 68.274 0.373 22.498 43.602 64.890 95.402 3647 1.000
y_rep[3,2] 30.689 0.180 10.344 19.252 29.185 43.696 3306 1.000
y_rep[4,1] 40.219 0.211 13.144 25.724 38.013 57.584 3867 1.000
y_rep[4,2] 48.686 0.300 17.636 30.579 45.926 69.385 3446 1.001
y_rep[5,1] 20.072 0.104 6.559 12.637 19.181 28.391 4000 0.999

The R-hat values are all near 1, which is consistent with convergence. The effective sample size
estimates for each parameter are sufficient for inference. Thus we have reason to trust this fit.

The expected values z are unlike the replicated draws y_rep in two ways. First, their
posterior has much lower variance and much narrower 80% intervals. This is to be expected,
as the y_rep additional takes into account measurement and unexplained variance, whereas
z only takes into account parameter estimation uncertainty. Second, the mean values of z

y_rep[5,2] 42.138 0.229 14.141 26.496 39.932 59.978 3817 0.999
y_rep[6,1] 13.998 0.072 4.560 8.991 13.277 19.568 3996 1.000
y_rep[6,2] 27.348 0.143 9.024 17.570 25.882 38.971 4000 1.000
y_rep[7,1] 13.515 0.072 4.567 8.680 12.850 18.830 3990 1.000
y_rep[7,2] 16.769 0.087 5.497 10.914 15.925 23.477 4000 1.000
y_rep[8,1] 16.375 0.086 5.218 10.616 15.650 23.140 3691 1.000
y_rep[8,2] 10.637 0.057 3.443 6.820 10.145 15.011 3622 0.999
y_rep[9,1] 22.215 0.111 6.957 14.580 21.320 30.907 3910 0.999
y_rep[9,2] 7.401 0.042 2.472 4.763 7.009 10.528 3513 1.000
y_rep[10,1] 32.583 0.164 10.380 21.367 31.104 45.750 4000 1.000
y_rep[10,2] 6.161 0.032 1.981 3.948 5.880 8.749 3871 1.000
y_rep[11,1] 47.371 0.244 15.080 30.840 45.172 66.066 3824 1.000
y_rep[11,2] 6.760 0.038 2.267 4.310 6.416 9.647 3596 1.000
y_rep[12,1] 65.170 0.365 21.333 41.759 61.560 93.365 3408 1.000
y_rep[12,2] 11.041 0.061 3.755 7.021 10.446 15.530 3823 1.000
y_rep[13,1] 71.578 0.400 23.225 45.589 67.832 100.801 3365 1.002
y_rep[13,2] 24.836 0.136 8.604 15.696 23.432 35.376 4000 1.000
y_rep[14,1] 48.445 0.277 16.715 30.875 45.560 69.762 3652 1.001
y_rep[14,2] 46.205 0.246 15.565 29.285 44.282 65.262 4000 1.000
y_rep[15,1] 23.638 0.135 8.003 14.949 22.369 33.551 3518 1.000
y_rep[15,2] 45.713 0.258 15.716 28.659 43.312 65.617 3717 1.001
y_rep[16,1] 14.834 0.079 4.763 9.499 14.218 20.729 3675 1.000
y_rep[16,2] 31.065 0.177 10.493 19.811 29.442 44.113 3510 1.001
y_rep[17,1] 13.225 0.069 4.212 8.405 12.623 18.545 3773 1.001
y_rep[17,2] 19.181 0.098 6.168 12.484 18.261 26.998 4000 1.000
y_rep[18,1] 15.362 0.079 4.980 9.827 14.714 21.514 4000 1.001
y_rep[18,2] 11.860 0.062 3.850 7.608 11.330 16.555 3855 1.000
y_rep[19,1] 20.654 0.108 6.806 13.256 19.569 29.732 4000 0.999
y_rep[19,2] 8.031 0.044 2.657 5.088 7.663 11.335 3673 1.000
y_rep[20,1] 29.251 0.146 9.265 19.171 27.954 40.696 4000 1.000
y_rep[20,2] 6.342 0.032 2.015 4.100 6.053 8.899 4000 1.000
lp__ 21.011 0.063 2.219 18.101 21.382 23.503 1247 1.004

Samples were drawn using NUTS(diag_e) at Tue Nov 7 16:13:15 2017.
For each parameter, n_eff is a crude measure of effective sample siz
e,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

are lower than the corresponding values of y_rep . This is because y_rep is adding a
lognormal error term, which has a positive expectation as it is constrained to be positive; this
positivity is also a factor in the fits that are derived for z .

Comparing the !tted model to data

Using a non-statistically motivated error term and optimization, Howard (2009, Figure 2.10)
provides the following approximate point estimates for the model parameters based on the
data.

Our model produced the following point estimates based on the posterior mean, which
minimizes expected squared error,

and the posterior median, which minimizes expected absolute error,

The estimates are very similar to each other and to Howard’s.

Howard then plugs in these point estimates and derives the most likely populations
(including the initial population). Rather than plugging in point estimates to get point
predictions, we will adjust for the two forms of uncertainty inherent in our model. First, there
is estimation uncertainty, which we characterize with the posterior density

. The second form of uncertainty is the observation error and unexplained
variation, which are both rolled into a single sampling distribution,

. As in the Stan implementation, is the solution to the differential
equation conditioned on the parameters and initial state . Altogether, we will be
repulating new values, which we write as , according to the posterior predictive
distribution,

where is the vector of parameters for the model. Then, we calculate the
posterior mean, which is itself an expectation,

= 0.55, = 0.028, = 0.84, = 0.026α̂ β̂ γ ̂ δ̂

= 0.55, = 0.028, = 0.80, = 0.024α̂ β̂ γ ̂ δ̂

= 0.54, = 0.035, = 0.80, = 0.030.α̂ β̂ γ ̂ δ̂

z
z0

p(α, β, γ, δ, , σ ∣ y)z0

log ∼ &'()*+(log , σ)yn zn zn
α, β, γ, δ z0

y yrep

p(|y) = ∫ p(|θ) p(θ|y) dθ.yrep yrep

θ = (α, β, γ, δ, , σ)z0

r̂ep ,[|y]rep

As with other posterior expectations, the Bayesian point estimate is given by a simple average
over simulated values, where is just the result of simulating the value of according
to the generative model based on parameter draw .

The posterior predictive estimates of the dynamics are shown below, along with the raw data
on number of pelts collected.

z0_draws <- extract(fit)$z0
z_draws <- extract(fit)$z
y0_rep_draws <- extract(fit)$y0_rep
y_rep_draws <- extract(fit)$y_rep
predicted_pelts <- matrix(NA, 21, 2)
min_pelts <- matrix(NA, 21, 2)
max_pelts <- matrix(NA, 21, 2)
for (k in 1:2) {
 predicted_pelts[1, k] <- mean(y0_rep_draws[, k])
 min_pelts[1, k] <- quantile(y0_rep_draws[, k], 0.25)
 max_pelts[1, k] <- quantile(y0_rep_draws[, k], 0.75)
 for (n in 2:21) {
 predicted_pelts[n, k] <- mean(y_rep_draws[, n - 1, k])
 min_pelts[n, k] <- quantile(y_rep_draws[, n - 1, k], 0.25)
 max_pelts[n, k] <- quantile(y_rep_draws[, n - 1, k], 0.75)
 }
}

lynx_hare_melted_df <- melt(as.matrix(lynx_hare_df[, 2:3]))
colnames(lynx_hare_melted_df) <- c("year", "species", "pelts")
lynx_hare_melted_df$year <-
 lynx_hare_melted_df$year +
 rep(1899, length(lynx_hare_melted_df$year))

Nmelt <- dim(lynx_hare_melted_df)[1]
lynx_hare_observe_df <- lynx_hare_melted_df
lynx_hare_observe_df$source <- rep("measurement", Nmelt)

yr̂ep =

=

=

≈

,[|y]yrep

∫ p(|y) dyrep yrep yrep

∫ p(|θ) p(θ|y) d dθyrep yrep yrep

1
M ∑

m=1

M
yrep(m)

yrep(m) yrep

θ (m)

lynx_hare_predict_df <-
 data.frame(year = rep(1900:1920, 2),
 species = c(rep("Lynx", 21), rep("Hare", 21)),
 pelts = c(predicted_pelts[, 2],
 predicted_pelts[, 1]),
 min_pelts = c(min_pelts[, 2], min_pelts[, 1]),
 max_pelts = c(max_pelts[, 2], max_pelts[, 1]),
 source = rep("prediction", 42))

lynx_hare_observe_df$min_pelts = lynx_hare_predict_df$min_pelts
lynx_hare_observe_df$max_pelts = lynx_hare_predict_df$max_pelts

lynx_hare_observe_predict_df <-
 rbind(lynx_hare_observe_df, lynx_hare_predict_df)

population_plot2 <-
 ggplot(data = lynx_hare_observe_predict_df,
 aes(x = year, y = pelts, color = source)) +
 facet_wrap(~ species, ncol = 1) +
 geom_ribbon(aes(ymin = min_pelts, ymax = max_pelts),
 colour = NA, fill = "black", alpha = 0.1) +
 geom_line() +
 geom_point() +
 ylab("pelts (thousands)") +
 ggtitle("Posterior predictive replications with 50% intervals\nvs. me
asured data")
population_plot2

This posterior predictive check shows that the model fit is consistent with the data, with
around 50% of the data points falling within the 50% intervals.

How large are the populations?
Going on the assumption that the number of pelts collected is proportional to the population,
we only know how the relative sizes of the populations change, not their actual sizes.

This model could be combined with a mark-recapture model to get a better handle on the
actual population size. Mark-recapture gives you an estimate of actual numbers and the Lotka-
Volterra model would provide information on relative change in the predator and prey
populations.

Extensions to the model
The Lotka-Volterra model is easily extended for realistic applications in several ways.

1. Predictors can be rolled into the system state to take into the dynamnics to account for
things like the correlation of populations with the abundance of food.

2. The model may be extended beyond two species. The dynamics for each species will
reflect that it may stand in predator-prey relations to multiple other species.

3. Additional data for population observations may be included, such as adding a mark-
recapture model for tag-release-recapture data of populations.

Exercises
1. Extend predictions another 50 years into the future and plot as in the last plot. This can

be done by extending the solution points in the transformed parameters, but is more
efficiently done in the generated quantities block.

2. Write a Stan model to simulate data from this model. First simulate parameters from the
prior (or pick ones consistent with the priors). Then simulate data from the parameters.
Finally, fit the model in Stan and compare the coverage as in the last plot in the case
study.

3. Suppose that several of the measurements are missing. Write a Stan program that uses
only the observed measurements. How robust is the fit to missing a few data points?

4. Write a Stan model that predicts the population at finer-grained intervals than a year
(such as every three months). Can the model be formulated to only use the yearly data?
Do the smoother plots for predicted populations make sense? Does this fit better or
worse than the original model?

5. Replace the lognormal error with a simple normal error model. What does this do to the
z estimates and to the basic parameter estimates? Which error model fits better?

References
Howard, P. (2009). Modeling Basics. Lecture Notes for Math 442, Texas A&M
University.

Lotka, A. J. (1925). Principles of physical biology. Baltimore: Waverly.

Volterra, V. (1926). Fluctuations in the abundance of a species considered
mathematically. Nature, 118(2972), 558-560.

Volterra, V. (1927). Variazioni e fluttuazioni del numero d’individui in specie animali
conviventi. C. Ferrari.

Appendix: Session information

sessionInfo()

Appendix: Licenses
Code © 2017, Columbia University, licensed under BSD-3.
Text © 2017, Bob Carpenter, licensed under CC-BY-NC 4.0.

R version 3.3.2 (2016-10-31)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X Yosemite 10.10.5

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] rstan_2.16.2 StanHeaders_2.16.0-1 ggplot2_2.2.1
[4] reshape_0.8.7 rmarkdown_1.5

loaded via a namespace (and not attached):
[1] Rcpp_0.12.8 knitr_1.17 magrittr_1.5 munsell_0.4.
3
[5] colorspace_1.3-2 stringr_1.1.0 plyr_1.8.4 tools_3.3.2
[9] parallel_3.3.2 grid_3.3.2 gtable_0.2.0 htmltools_0.
3.6
[13] yaml_2.1.14 lazyeval_0.2.0 rprojroot_1.2 digest_0.6.1
0
[17] assertthat_0.1 tibble_1.2 gridExtra_2.2.1 codetools_0.
2-15
[21] inline_0.3.14 evaluate_0.10 labeling_0.3 stringi_1.1.
2
[25] scales_0.4.1 backports_1.0.5 stats4_3.3.2

