Model Description

I am trying to model the transition probability of survey response. Each of the $N=1700$ survey respondents are asked $K=12$ questions in two waves, leading to data $Y_{n, k, t}$ with $n=1, \ldots, N, k=1, \ldots, K, t=1,2$. All answers $Y_{n, k, t}$ are in $1,2, \ldots, 5$ scale. Some other demographic information is also collected so we can divide all responses into $L=488$ cells according to the interaction of those demographic variables. Let $l(n)$ to be the index of cell that respondents n belongs to, and let $y 1(n)$ and $y 2(n)$ denotes the response of that person on wave 1 and 2 .

The transition probability from response i to j on question k in cell i is denoted by $p_{i, j, k, l}$. The likelihood is given by

$$
\prod_{n, k} \operatorname{Pr}\left(Y_{n, k, 2} \mid Y_{n, k, 1}\right)=\prod_{n} \prod_{k} p_{[i=y 1(n), j=y 2(n), k=k, l=l(n)]}
$$

The transition probability should satisfy the 4 -simplex condition for any given i, k, l :

$$
\sum_{j=1}^{5} p_{i, j, k, l}=1, \quad p_{i, j, k, l} \geq 0
$$

We can imagine it should be a nearly symmetric distribution spiked at i. In practice, we model the \log probability ratio $q \in R$:

$$
q_{i, j, k, l}=\log \left(\frac{p_{i, j, k, l}}{p_{i, i, k, l}}\right)
$$

so that the reference probability of making the same response in two waves is always $q_{i, i, k, l}=0$. Conversely,

$$
p_{i, j, k, l}=\frac{\exp \left(q_{i, j, k, l}\right)}{\sum_{j=1}^{5} \exp \left(q_{i, j, k, l}\right)}
$$

We model the probability of the second-wave response with decay proportional to the root distance $\sqrt{|i-j|}$. The larger distance, the less possible to make the jump. The main effect $\beta_{i, k, l} \in R$ captures such decay rate. A larger β indicates higher chance to stick to the initial answer.

To allow a potential asymmetric distribution, we further introduce $\gamma_{k} \in R$ to be the question level shift. It capture how likely to make a positive jump. Intuitively, when γ_{k} is negative, it makes the distribution of the transition sharper on the right tail, making it less likely to make a positive jump, so there will be a global negative shift, and vise versa.

$$
\begin{aligned}
q_{i, j, k}=-\left(\beta_{i, k, l}\right. & \left.-\gamma_{k} I(j>i)\right) \sqrt{|i-j|} \\
\gamma_{k} & \sim \mathrm{~N}\left(0, \sigma_{\gamma}^{2}\right)
\end{aligned}
$$

We also allow the main effect β to vary across initial value i, question k, and demographic variable l. To begin with, we decompose the transition probability as the summation of characteristic effects λ_{l}, question level effect μ_{k} and attitude-level effect η_{i}. All these
parameters are unconstrained and centered at 0 (for identification). $\mu_{0} \in R$ is the extracted constant term.

$$
\beta_{i, k, l} \sim \mathrm{~N}\left(\lambda_{l}+\mu_{k}+\eta_{i}+\mu_{0}, \sigma_{\beta}^{2}\right), \quad \mu_{k} \sim \mathrm{~N}\left(0, \sigma_{\mu}^{2}\right) \quad \eta_{i} \sim \mathrm{~N}\left(0, \sigma_{\eta}^{2}\right)
$$

The demographic effect λ_{l} itself is modeled as the summation of the effects of each demographic variables, e.g, age, gender, marriage Let age $[l]$, gender $[l], \ldots$, denotes the corresponding variable values in cell l. All these variables are categorical. For example, age is in 1-6 scale, so $\lambda^{\text {age }}[t](t=1, \ldots, 6)$ represents the age effect in cells with age $=t$.

$$
\begin{gathered}
\lambda_{l}=\lambda^{\text {age }}[\text { age }[l]]+\lambda^{\text {gender }}[\text { gender }[l]]+\ldots, \\
\lambda^{\text {age }}[t] \sim \mathrm{N}\left(0, \sigma_{\text {age }}^{2}\right), \quad \lambda^{\text {gender }}[t] \sim \mathrm{N}\left(0, \sigma_{\text {gender }}^{2}\right), \ldots
\end{gathered}
$$

