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ABSTRACT

Factor models are used in a wide range of areas. Two issues with Bayesian versions of these

models are a lack of invariance to ordering of and scaling of the variables and computational inef-

ficiency. This paper develops invariant and efficient Bayesian methods for estimating static factor

models. This approach leads to inference that does not depend upon the ordering or scaling of

the variables, and we provide arguments to explain this invariance. Beginning from identified pa-

rameters which are subject to orthogonality restrictions, we use parameter expansions to obtain a

specification with computationally convenient conditional posteriors. We show significant gains

in computational efficiency. Identifying restrictions that are commonly employed result in inter-

pretable factors or loadings and, using our approach, these can be imposed ex-post. This allows us

to investigate several alternative identifying (non-invariant) schemes without the need to respecify

and resample the model. We illustrate the methods with two macroeconomic datasets.

Keywords:Bayesian, Markov Chain Monte Carlo, Reduced rank regression.
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1 Introduction

Factor models have proven useful in many areas including psychology, genomics, epidemiology,

economics and finance and significant advances in computation using Bayesian approaches (for

example, Geweke and Zhou (1996), Aguilar and West (2000) and Chib, Nardari, and Shephard

(2006)) have made Bayesian analysis of such models feasible for a range of applications. Two

problems that have hampered Bayesian inference in factor models are, first, the models are not

invariant to different ordering of the variables (see, for example, Lopes and West (2004)) and,

second, poor efficiency of computation algorithms (e.g., Chibet al. (2006)).

This paper makes a number of contributions. i) This paper presents an invariant specification.

That is, the specification will result in inference that does not depend upon the ordering of the vari-

ables. ii) We use parameter expansions to develop an algorithm that is both easy to implement and

computationally efficient. The resulting posteriors have relatively simple normal forms. Further,

as with the extant non-invariant specifications, our specification is overparameterised. However,

we follow the rules of Liu and Wu (1999) to ensure efficiency gains. It is not clear that extant

specifications do follow these rules and this may explain to some degree the poor sampling. iii)

Finally, we provide a formal explanation for why extant specifications are not invariant, that is,

why the evidence in the model can change when the order of the variables changes. In doing so,

we demonstrate that there is not an identification problem so much as a specification problem in

these models.

Reordering of variables involves groups of transformations of the parameters in the model.

We therefore use group theory to show why existing specifications are not invariant to reordering

of the variables. Work to date considering invariance has taken one of two approaches. The first

approach attempts to resolve the issue by averaging over orderings (see for example Geweke (1996)

and Fr̈uhwirth-Schnatter and Lopes (2010)). To estimatek we would need to estimate all orderings

for all values ofk. Averaging over orderings shows promise in small dimensional settings, but as
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applications often have many variables (sometimes hundreds), the number of potential orderings to

average over increases into the trillions making an averaging approach computationally infeasible

or at best challenging. For example, Forni, Giannone, Lippi and Reichlin (2009) investigate some

89 series and find there are betweenk = 12 andk = 18 factors. In this case, if we were to use

a non-invariant Bayesian approach and average over all orderings we would need to average over

more than 237 trillion fork = 12 and 3 million trillion models fork = 18. It would seem more

practical and feasible to only have one invariant model to consider for eachk.

Another approach, therefore, is to develop a single model that does not depend upon the or-

derings. Examples of work taking this approach, besides our paper, are Bhattacharya and Dunson

(2011), Aßmann, Boysen-Hogrefe, and Pape (2012) and Kaufmann and Schumacher (2012). Our

approach differs from these in that we explicitly take the perspective of the factor model as a re-

duced rank regression model, such as in Bai and Ng (2002), and use previous work that utilizes

the geometry of that model to develop an invariant model specification and inferential framework.

Taking this perspective leads us to the view that, contrary to general belief, there is not an identifi-

cation problem in the factor model but rather there is a problem with the specification used.

The invariant specification we propose uses a singular value decomposition as in Hoff (2007).

This approach is related to the principal components specification commonly used in the frequen-

tist literature (see, for example, Connor and Korajczyk (1986) and Bai and Ng (2002)) and effi-

cient computation is achieved by combining this with and extension of the parameter expansion

approach of Ghosh and Dunson (2009) in the static factor model and Koop, Léon- Gonźalez and

Strachan (2010 & 2012) in the vector error correction model and instrumental variables model.

The parameter expansions are chosen to obtain a specification that is simple to implement, in fact

simpler than standard extant specifications. A further benefit of this expanded specification is that

the resulting sampler is efficient. This parameter expansion may be viewed as a generalization of

the Ghosh and Dunson (2009) approach to computing factor models but with the added benefit of

invariance.
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In Section 2 we present the identified parameters in the invariant Bayesian specification of

the static factor model and the priors for this model from a singular value decomposition (SVD)

(contribution i). We then introduce the full parameter expansion using invariant transformations to

obtain the prior for the ‘expanded’ model (contribution ii). We present the posterior, sampling al-

gorithm and the posterior probability estimation for this ‘expanded’ model. In Section 3 we briefly

outline the features of the static factor model and discuss relationships, in particular mappings,

among existing identification schemes, two of which are popular non-invariant specifications used

in the Bayesian literature and one invariant specification used in the frequentist literature. This

discussion allows us to present the source of invariance (contributions iii, iv and v). Section 4

presents several applications including one small application to six exchange rates to demonstrate

the effect of reordering and efficiency of the proposed sampling algorithm in this paper. Section 5

provides some concluding comments and potential extensions.

2 The invariant static factor model

In this section we present the invariant specification of the static factor model. In the model stacked

over time, we will show that the product of the matrix of all factors and the loading matrix forms a

reduced rank matrix. The row and column space of this matrix are identified (as are various norms).

There is a smooth relationship between these spaces and appropriate orthonormal frames which we

take advantage of to achieve an invariant specification. The parameters identified under the likeli-

hood are the elements of the singular value decomposition of a reduced rank matrix, and therefore

some of the identified parameters are orthonormalk-frames that belong to the Stiefel manifold. As

discussed in Section 3, most of the literature have attempted to estimate parameters which are dis-

continuous transformations of the identified parameters, and it is this discontinuity that causes lack

of invariance. In contrast, we build on the theory of invariant measures and distributions on special

manifolds (e.g. Amari (1985), Chikuse (2003)) and first specify priors directly on the identified
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parameters. In order to facilitate computations we then introduce non-identified parameters that

allow us to define diffeomorphic transformations from the identified and non-identified parameters

(the parameter expansions) to parameters with computationaly convenient supports (Real space)

and distributions (normal). Because the transformations are diffeomorphic the resulting approach

preserves the invariant (order independent) inference, while allowing for a much more efficient

algorithm for computations. The prior that we propose is defined in such a way that conditional

posteriors belong to standard families and allow for simple and efficient computations. Although

previous work by Hoff (2007) proposes an invariant approach that works directly with the identi-

fied parameters, we show in the supplemental material B that thanks to the parameter expansions

the efficiency gains of our approach can be very large.

We can write the factor model as a reduced rank regression model for a 1× n vectoryt ∈ Rn

with k < n factors as

yt = ftΛ + εt, εt ∼ N (0,Σ) , for t = 1, ...,T (1)

where ft is a 1× k vector,Λ is ank× n matrix, andεt is a 1× n vector with a diagonal covariance

matrix denoted byΣ. By stacking observations equation (??) can be equivalently written asy =

FΛ + ε = Π + ε, wherey andε areT × n matrices withE
(
vec(ε) vec(ε)′

)
= Σ ⊗ IT , F is aT × k

matrix such that the matrixΠ = FΛ has rankk. In this section we develop priors forΛ andF by

beginning with the parameters that are identified under the likelihood and, via a series of parameter

expansions, we obtain the prior and posterior for the expanded model.

The reduced rank model in (??) has the same structure as a one-mode analysis used in psy-

chometrics (see, for example, Magnus and Neudecker (1988)) for which frequentist approaches

to estimation are proposed. Bayesian inference in other reduced rank models, such as the coin-

tegrating vector error correction model and the overidentified simultaneous equations model, has

been extensively explored and this literature is informative on how to approach the analysis of

this model. Bayesian approaches most relevant to this paper are Strachan and Inder (2004), Koop,
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Léon-Gonźalez and Strachan (2010 & 2012).

Taking a singular value decomposition (SVD) of the reduced rank matrixFΛ, we have

FΛ = U1S1V
′
1 (2)

U1 ∈ Vk,T V1 ∈ Vk,n

S1 = diag(s1, s2, . . . , sk)

wheresi > si+1 > 0 for all i andVm,n denotes the Stiefel manifold such thatVm,n = {H (n×m) ; H′H = Im}

(for discussion, see Muirhead (1982)). All of the parametersU1, S1 andV1 are identified up to sign

and have, respectively,Tk− k(k+1)
2 , k andnk− k(k+1)

2 free elements.

In what follows, we define the trace of a square matrixA astr (A) . We specify priors forU1,

S1 andV1 with the form

f (S1,V1) (dS1)
(
U′1dU1

) (
V′1dV1

)
cO

cNcU

f (S1,V1) ∝ exp
{
−

cλ
2

tr
(
V′1M−1V1S

2
1

)}
2−k |S1|

n−k
k∏

i< j

(
s2

i − s2
j

)
,

cN

cO
=

∫
f (S1,V1) (dS1)

(
V′1dV1

)
, cU =

∫
(
U′1dU1

)
=

2kπ
Tk
2

Γk

(
T
2

)

cO =

∫
(
C′dC

)
=

2kπ
k2
2

Γk

(
k
2

) , Γk

(m
2

)
= πk(k−1)/2

k∏

i=1

Γ

[
m− i + 1

2

]

,

whereM is a matrix that can be fixed equal to the identity matrixIn for a prior that is invariant to

ordering only, or equal toΣ for a prior that is invariant to both ordering and scale transformation.

The prior forU1 is uniform on the Stiefel manifold (for further discussion see James (1954)) and

the prior forV1 is uniform also whenM = In but not whenM = Σ. We give an explicit expression

for cN below. The diagonal elements of the matrixS1 have a ‘standard’ prior which we will show

implies that, marginally onF, Λ follows a Matrix variate t-distribution (Gupta and Nagar, 2000, p.

134) with degrees of freedom equal to (T+1−k−n), zero mean andvar(vec(Λ)) = M⊗Ik
1
cλ

1
(T−n−k−1).

The priors forU1,S1 andV1 are all proper. The termcλ is included to permit shrinkage ofΛ towards
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zero or a more diffuse prior if desired.

2.1 Parameter expansions

We introduce the nonidentified parameters by two parameter expansions. From the first expansion,

we obtain a normal form for the loading matrix and the second expansion results in a normal prior

for the factors. These expansions do not affect the proper, independent priors forU, S andV,

uniform priors forU andV, and the standard prior forS.

Map from the SVD parameters(U1,S1.V1) to the expanded parameters(U1,Λ
∗) by introducing

the orthogonal matrixC ∈ O (k) via the transformation

U1S1V
′
1 = U1C

′CS1V
′
1 = UΛ∗

U1C
′ = U, CS1V

′
1 = Λ∗. (3)

The expanding parameterC is given a uniform distribution onO (k) : (C′dC) . The transforma-

tionΛ∗ = CS1V′1 is a singular value decomposition ofΛ∗ such that Jacobian of this transformation

can be calculated using results in, for example, James (1954, p.71). The transformation of mea-

sures for (??) is
(
U′1dU1

)
= (U′dU), such that the prior now becomes

f (S1) (dS1)
(
U′1dU1

) (
V′1dV1

)
(C′dC)

cNcU
=

p∗ (Λ∗) (dΛ∗) (U′dU)
cNcU

p∗ (Λ∗) = exp
{
−

cλ
2

tr
(
M−1Λ∗′Λ∗

)}
,

cN =

∫
p∗ (Λ∗) (dΛ∗) =

∫
f (S1) (dS1)

(
V′1dV1

) (
C′dC

)
=

(
2π
cλ

) nk
2 ∣∣∣M

∣∣∣
k
2 ,

and soΛ∗ = CS1V′1 has a normal prior distribution such thatp∗ (Λ∗) has a form proportional to the

density of a zero mean normal distribution with covariance matrix1
cλ

(M⊗ Ik). The semi-orthogonal

matrixU has a uniform distribution overVk,T . In the new parameterization,FΛ = UΛ∗, the matrix

Λ∗ is has a ‘nice’ form and prior butU is restricted to be semi-orthogonal, and so it would be

8
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difficult to obtain draws from the posterior.

To give the parameters a more computationally convenient form and prior distributions, we

transform from(U,Λ∗) to (F,Λ) via the second parameter expansion. Introduce thek × k rankk

matrix κ with k(k+1)
2 free parameters.κ may be, for example, lower triangular or symmetric. This

matrix is used to obtain the following transformations:

UΛ∗ = Uκκ−1Λ∗ = FΛ

whereF = Uκ andΛ = κ−1Λ∗. It is easier to work with the transformationA = κ′κ = F′F and write

the Jacobian of the bijective transformation from (A,U,Λ∗) to (A, F,Λ) (e.g. Muirhead (1982), p.

58, 66) as

p∗ (Λ∗) (dA) (U′dU) (dΛ∗)
cNcU

=
p (Λ, F) J (F) (dΛ) (dF)

cNcU

J (F) = 2k |F′F|−(T−n−k−1)/2 , p (Λ, F) = exp
{
−

cλ
2

tr
(
M−1Λ′F′FΛ

)}

Clearly the presence of the determinant|F′F| in the above Jacobian would complicate compu-

tation, particularly as we prefer to have a more convenient form such as a normal distribution for

F. Fortunately, we are free to choose the distribution ofA and so we let this matrix have a Wishart

Distribution with degrees of freedom such that the prior forA is proportional to

exp

{

−
1
2

tr (A)

}

|A|(T−n−k−1)/2 = exp

{

−
1
2

tr
(
F′F

)
}

|F′F|(T−n−k−1)/2 .

When we introduce this into the full prior we obtain the following expression of the measure

|A|(T−n−k−1)/2 exp
{
−1

2tr (A)
}

p∗ (Λ∗) (dA) (U′dU) (dΛ∗)

cNcUcA
(4)

= exp

{

−
1
2

tr
(
F′F

)
}

|F′F|(T−n−k−1)/2 p (Λ, F) |F′F|−(T−n−k−1)/2 (dΛ) (dF) c

= exp

{

−
1
2

tr
(
F′F

)
}

p (Λ, F) (dΛ) (dF) c

wherec = 2k

cNcUcA
and definecA as

9
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cA =

∫
|A|(T−n−k−1)/2 exp

{

−
1
2

tr (A)

}
(dA) = 2(T−n)k/2Γk

(T − n
2

)
.

We can summarize the transformations used to this point as

Π = U1S1V
′
1 = U1C

′CS1V
′
1 = UΛ∗ = Uκκ−1Λ∗ = FΛ (5)

The resulting joint prior distribution forF andΛ is given by

p (Λ, F) (dΛ) (dF) = exp

{

−
1
2

tr
(
F′F

)
}

exp
{
−

cλ
2

tr
(
M−1Λ′F′FΛ

)}
(dΛ) (dF) c. (6)

Recall that are (Λ, F) are unrestricted matrices and note also thatp (Λ,QF) = p (Λ, F) for any

orthogonal matrixQ, which confirms that the prior for the space ofU1 is uniform. Integrating (??)

with respect toF we get that the marginal prior forΛ is a matrix variate t-distribution (e.g. Gupta

and Nagar, 2000, p. 134) with zero mean andvar(vec(Λ)) = M ⊗ Ik
1
cλ

1
(T−n−k−1). The resulting

conditional priors have convenient normal forms such that they will be conjugate with the usual

specification for the model fory. That is, the conditional prior forλ = vec(Λ) |F is normal with

zero mean and covariance matrixV
λ
= M 1

cλ
⊗ (F′F)−1. The conditional prior forf = vec(F) |Λ

is normal with zero mean and covariance matrixVF =
[
Ik + cλΛM−1Λ′

]−1
⊗ IT . For the chosen

transformations and distributions for the unidentified parameters,C andκ, we have results from Liu

and Wu (1999) ensuring the sampler will converge. Specifically, the transformations we use form

locally compact groups and the priors for the expanding parameters correspond to Haar measures.

Further, the expanding parameters are independent of the identified parameters.

Parameter expansions have been used in earlier work in factor models to produce more effi-

cient and simple sampling schemes (see, for a recent example, Ghosh and Dunson, 2009) and to

accelerate the EM algorithm in factor models (Liu, Rubin and Wu, 1998, Ročková and George,

2015). The approach in this paper is an application of that developed in Liu (1994) and Liu and

Wu (1999) and shares some of the features of Ghosh and Dunson (2009). However, a contribu-

tion of this paper that distinguishes it from this earlier work is to use parameter expansion to also

achieve invariant inference. This builds upon earlier work on estimation of reduced rank models

10
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(Koop, Léon-Gonźalez and Strachan (2010) & (2012)) which is natural as the factor model can be

represented as a particular type of reduced rank regression model.

2.2 Posterior Computations

In this section we extend the model to allow exogenous variables, provide priors for the other

parameters in the model and discuss approaches to computingk. The static factor model is often

specified withm exogenous variables collected into the(T ×m) matrix X. After the parameter

expansions in the previous section we obtained the matrix of factorsF and the loading matrixΛ.

The model can now be written as

Y = Xβ + FΛ + ε, ε ∼ N (0,Σ ⊗ IT) (7)

f = vec(F) |λ ∼ N
(
0,VF

)
, λ = vec(Λ) | f ∼ N

(
0,V

λ

)
, (8)

b = vec(β) ∼ N

(

0,Σ ⊗
(
X′X

)−1 1
cβ

)

(9)

whereVF =
[
Ik + cλΛM−1Λ′

]−1
⊗ IT andV

λ
= M 1

cλ
⊗ (F′F)−1. We assume each diagonal element

of Σ = diag
{
σ2

i

}
has an inverse gamma prior

p
(
σ2

i

)
∝

(
σ2

i

)− ν+2
2 exp




−
ν

2σ2
i μi





(
dσ2

i

)

such that

p (Σ) ∝ |Σ|−
ν+2
2 exp

{
−
ν

2
tr

(
Σ−1Ω

)}
(dΣ) (10)

whereΩ = diag
{

1
μ

1
, 1
μ

2
, . . . , 1

μ
n

}
. To preserve scale invariance requires that the prior forΣ also be

scale invariant. One option is to use the Jeffrey’s prior and setν = 0 in (??). Another approach is

to set eachμ
i
to be some function of the scale of the data. For example, we could setμ

i
= 1
σ̂2

i
where

σ̂2
i is the sample variance ofyi . By settingΩ = diag

{
σ̂2

1, σ̂
2
2, . . . , σ̂

2
n

}
, the prior in (??) permits both

of these options. The conditional posteriorsf |λ, b,Σ, λ| f ,b,Σ andb| f , λ,Σ are normal while the
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elements on the diagonal ofΣ| f , λ, b are inverse gamma distributions. The precise form of these

conditional posteriors are given in the Appendix.

One important question in factor models is the number of factors,k. The model with no factors

occurs at the pointΛ = 0 and at this point the factors are excluded from the likelihood. Therefore

we are able to use the Savage-Dickey density ratio (SDDR) to compute the Bayes factors fork = 0

to k = k∗, B0,k∗ , as (Verdinelli and Wasserman (1995)):

B0,k∗ =
m0

mk∗
=

p (Λ = 0|y)
p (Λ = 0)

cVW

wheremk∗ is the marginal likelihood for the model withk∗ factors, p (Λ = 0|y) is the marginal

posterior ofΛ at the pointΛ = 0, p (Λ = 0) is the marginal prior forΛ evaluated at the same point,

andcVW is the correction factor proposed by Verdinelli and Wasserman (1995). WhenM = In the

correction factorcVW is equal to one, and the marginal prior ofΛ is a matrix variate t-distribution so

that the value of the prior ordinate can be calculated asp (Λ = 0) = c(2π)Tk/2, wherec was defined

next to expression (??). WhenM = Σ, the conditional prior ofΣ givenΛ = 0 depends onk, and

therefore the correction factorcVW becomes different from one. As shown in the Supplemental

material C, whenM = Σ the ratiocVW/p (Λ = 0) is given by:

cVW

p (Λ = 0)
=

(
π

cλ

)nk/2 Γk

(
T−n

2

)

Γk

(
T
2

)



Γ
(
ν+T

2

)

Γ
(
ν+k+T

2

)




n
n∏

i=1



h̃ii

2




k
2

(11)

wherẽhii is theith diagonal element of̃H = ν(Ω)+(Y−X̂β)′(Y−X̂β), and̂β = (1−
√

cβ/(1+ cβ))(X′X)−1X′Y.

With a sequence ofG draws from the posterior, we can compute the conditional posteriorp (Λ|β, F,Σ, y)

atΛ = 0 to estimate the required ratio as:

B̂0,k∗ =

1
GΣ

G
i=1p

(
Λ = 0|β(i), F(i),Σ(i), y

)

p (Λ = 0)
cVW,

wherei = 1, ..,G indicates the draws from the posterior.

Note that we are able to use the SDDR because the pointΛ = 0 belongs to the parameter

space. The SDDR however cannot be used in the context of most previous literature because the
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identifying restrictions often imposed onΛ imply thatΛ = 0 is no longer a point in the parameter

space. Conversely, although the method of Chib (1995) can be used to calculate marginal likeli-

hoods in the non-invariant specifications, it is less suited to our specification because the accuracy

of the method relies on being able to estimate the posterior density accurately at a point of high

posterior density. This task is slightly more difficult in our context because we have introduced

non-identified parameters, which makes the augmented posterior density more disperse around the

mode. However, the SDDR method has the advantage that it does not require further calculations

beyond the basic estimation algorithm. The accuracy of both methods to calculate marginal likeli-

hoods decreases with the dimension ofy and the number of factors. In such situations one can use

alternative methods such as that of Chan and Eisenstat (2015) or calculate predictive likelihoods

(Geweke and Amisano, 2010), as we illustrate in the empirical applications of Section 4.

In the following section we provide the technical details for the several contributions of this

paper. The reader who prefers not to read the technical details in Section 3 and interested only in

applying the approach may prefer to skip to Section 4.

3 An explanation for non-invariance with discussion

In this section we provide an explanation for non-invariance (contribution iii from the introduc-

tion). We provide an informal explanation for the invariance followed by a theorem, the proof for

which we leave to the paper’s Supplemental material D. To support this discussion, we describe ex-

isting invariant specifications closely related to the one we propose. We then outline some standard

non-invariant identification schemes that have been used in Bayesian analysis of factor models to

indicate the source of the non-invariance.

The cause of the lack of invariance can be explained informally as follows. In the support for

the loading matrix,Λ, are points where subsets of columns form singular matrices. The collections

of these points form manifolds in the support. Changing the order of the variables inyt induces a
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transformation,g, of the loading matrix. These points of singularity pose no problems for the trans-

formation for the invariant specification asg is smooth, continuous and homoemorphic in this case.

From group theory, we know these conditions ensure invariance. For the non-invariant specifica-

tions, the transformation is discontinuous and so non-homeomorphic at these points of singularity,

thus losing invariance. We demonstrate the importance of this discontinuity for inference on the

number of factors with a simulation in the Supplemental material A.

The frequentist approach using principle components (as in Bai and Ng (2002)) is an invariant

specification very close to ours and that of Hoff (2007). In the frequentist approach, we take a

singular value decomposition of theT × n data matrixy and the factors may be associated with the

k eigenvectors associated with thek largest eigenvalues ofyy′. Bayesian computation of this model

is not straightforward, but achieved in this paper and Hoff (2007) in very different approaches. The

existence of an identified and invariant specificatoin leads to the conclusion that non-invariance is

not a problem of identification. Rather, it is a specification problem.

In this section we also show how to map from the principal components specification to the

other model specifications used in the literature thereby demonstrating how our specification can

permit any of the others.

Noninvariant specifications: In an identification scheme used, for example, in Geweke and

Zhou (1996),yt = f +t Λ
++εt, wheref +′t ∼ N(0, I ), Λ+ =

[
Λ+

1 Λ2

]
, thek×k matrixΛ+

1 is restricted

to be upper triangular with positive elements on the diagonal andΛ2 is ank × (n− k) unrestricted

matrix. The first factor is identified as it is the only factor entering the first variable. The next factor

is identified as, besides the already identified first factor, it is the only factor entering the second

variable, and so on. This structure requires the researcher to assume some knowledge about the

order of the variables with respect to the factors which imply the firstk rows of the loading matrix

are linearly independent.

We can readily transform to other non-invariant specifications (and back). For example, collect

the diagonal elements ofΛ+
1 into the diagonal of ank × k matrixΛ+

d . Next, definef 1
t = f +t Λ

+
d and

14
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
0:

33
 0

9 
O

ct
ob

er
 2

01
7 



ACCEPTED MANUSCRIPT

Λ1 =
(
Λ+

d

)−1
Λ+ andΛ1

1 =
(
Λ+

d

)−1
Λ+

1 such thatf +t Λ
+ = f +t ΛdΛ

−1
d Λ+ = f 1Λ1 and letΩ1 = Λ+′

d Λ+
d

be a diagonal covariance matrix for the errors in the factor process. In this identification scheme,

Λ1 is upper triangular with ones on the diagonal. This specification has been used in, for example,

Chib, Nardari and Shephard (2006) and Aguilar and West (2000) and requires similar assumptions

about the orders of the variables as the previous specification.

Denote byi a particular ordering of the variables. We will use the notationT+,i andT1,i for the

class of non-invariant identification schemes resulting from the restrictions toΛ+ andΛ1 respec-

tively for orderi.

The identification issues with this model are well understood. BecauseΣ is diagonal, the un-

restrictedΛ, Ω andΣ contain a total ofnk + n + k (k+ 1) /2 parameters which can exceed the

n (n+ 1) /2 parameters inE
(
y′tyt

)
. Even if we assumeΩ = Ik, we must restrictk ≤ (n− 1) /2 as

otherwise there would not be enough information to estimate all of the parameters (Geweke and

Zhou (1996)). There remains a second identification problem as we can rotateft and obtain an

observationally equivalent vectorf ∗t . That is, ifU ∈ O (k) ≡ {U : U (k× k) ,U′U = Ik} the orthog-

onal group, then rotate the parameters byf ∗t = ftU andΛ∗ = U′Λ and we can see that the rotated

parameters
(
f ∗t ,Λ

∗) and( ft,Λ) are not distinguishable since they both enter the likelihood as prod-

ucts: f ∗t Λ
∗ = ftΛ. For this reason restrictions are imposed uponΛ andΩ to permit estimation.

Note that this argument uses a specification offt andΛ that is overidentified and this permits the

observationally equivalent rotations. For the following discussion it is useful to denote the first

k columns ofΛ by Λ1. Generally we will take the matrixΛ1 to represent the columns that are

restricted to permit identification of the factors and these may not always be the firstk columns.

Notice that these specifications have the same dimension of parameter space asΣ is the same,ft

is always 1×k, and the free elements of[Λ+,Ω+] and
[
Λ1,Ω1

]
all have dimension(n− k) k+ k(k+1)

2 =

nk− k(k−1)
2 . With all ft, the total number of free parameters is then(T + n) k − k(k−1)

2 . These non-

invariant identification schemes (and priors) used in Bayesian approaches result in specifications

that have more parameters than can be identified from the likelihood. Thus they are still not
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identified under the likelihood, but are identified under the posterior due to the informative priors

on the overidentified parameters.

The source of the lack of invariance:A drawback of these specifications is that they assume

Λ1 is nonsingular which has implications for evidence on alternative values fork. Reordering the

variables involves groups of transformations with the discontinuity mentioned above occuring at

the point|Λ1| = 0. The simulation study in the Supplemental material A illustrates the issue and

demonstrates that this effect is neither ubiquitous nor a measure zero event. That is, the effect does

not occur at all points of the parameter space but nor is it only relevant at the point|Λ1| = 0. In

particular, when|Λ1| is relatively close to 0, the ordering assumption can have a large influence,

up to a tenfold impact in our simulations, on the marginal likelihood. Further, the numerical

standard error of the estimated marginal likelihood substantially increases, up to 40 times in our

simulations, when the ordering implicitly assumes that|Λ1| , 0 but in the data generating process

|Λ1| is close to 0. Choosing correctly the number of factors is also important for estimating the

variance decomposition accurately, as we illustrate in the Supplemental material E. Given the

above evidence, it would be sensible to choose the ordering in which the posterior mass for|Λ1|

is far from zero. Unfortunately, this point cannot be known a priori which brings us back to the

solutions of either averaging over all orderings or devising an invariant specification.

The non-invariant identification schemeT impose an order on the variables.

Definition 1 Denote byTi ordering i of the variables and denote a different ordering j byT j .

Definition 2 In the orderingTi the identification of the factors is achieved by placing restrictions

on the submatrixΛi
1.

Theorem 3 (Discontinuity) The transformation fromTi toT j has a discontinuity at
∣∣∣Λ j

1

∣∣∣ = 0.

Proof. See Supplemental materialD.
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To demonstrate this discontinuity with a simple example, consider a(2× 1) vectorΛ = (cos(θ) , sin(θ)) =

(λ1, λ2) whereθ ∈ [0, π). The non-invariant specification discussed above impliesΛ̂ =
(
1, λ̂2

)
where

λ̂2 = tan(θ) under one ordering,T1, with support(−∞,∞) which clearly includeŝλ2 = 0. Chang-

ing the order of the variables we obtaiñΛ =
(
λ̃1,1

)
whereλ̃1 = 1

tan(θ) = 1
λ̂2

is orderingT2 which

now excludes the point̂λ2 = 0. In this case there is a discontinuity fromT1 toT2 at λ̂2 = 0.

The discontinuity induced by the non-invariance also manifests in transforming fromθ to λ̂2.

This transformation maps from the support [0, π) to (−∞,∞). Transforming back from̂λ2 to θ,

however, transforms from the support(−∞,∞) to [0, π2) ∩ (π2, π]. The pointθ = π
2 is excluded.

In other words, there is a discontinuity fromT to G1,1. If, however, we used the specification

Λ = (cos(θ) , sin(θ)) = (λ1, λ2) whereθ ∈ [0, π), then in this simple case the support of the angle

θ maps homeomorphically to the one dimensional Grassmann manifold,G1,1, and changing the

order of the variables maps fromG1,1 to G1,1 without discontinuities.

More generally, transforming fromsp(Λ′) to Λ+ (or to Λ1) does not preserve the topology

as the deformation ‘punches holes’ in the form at points where|Λ1| = 0. The transformation

from the space toΛ+ is discontinuous at this point. Similarly, transforming between different

orderings, changing betweenΛ1 andΛ̃1, involves discontinuities at|Λ1| = 0.Without preservation

of the topology, the metric and therefore measure are not preserved hence the evidence onk under

alternative normalizations need not be the same. This effect is naturally most pronounced when

the true parameter values are near the point of discontinuity. As our small simulation exercise

in Supplementary material A showed, if we move far enough away from this point the effect is

mitigated.

The invariant specification used in this paper is closely related to that used in the method of

principal components (pc) to estimate the factors as in, for example, Bai and Ng (2002) (hereafter

BN). This specification is also invariant to ordering. Denote this model by

yt = f pc
t Λpc + εt.
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Stacking the observations overT we obtain

y = FpcΛpc + ε

wherey =
(
y′1, y

′
2, . . . , y

′
T

)′
, ε =

(
ε′1, ε

′
2, . . . , ε

′
T

)′
andFpc =

(
f pc′
1 , f

pc′
2 , . . . , f

pc′
T

)′
.

In BN, the matrixFpc is estimated as proportional to the matrix of eigenvectors3 associated

with thek largest eigenvalues of the matrixyy′. In other words, they take a SVD ofy as

y = US V′ = U1S1V
′
1 + U2S2V

′
2

whereU = [U1 U2] ∈ O (T) are the eigenvectors ofyy′ = US2U′ andV = [V1 V2] ∈ O (n) are

the eigenvectors ofy′y = VS2V′ andU′U = V′V = In. Setting the factors and loading matrices

to Fpc = U1 andΛpc = S1V′1, thenΛpc has the unusual property of being orthogonal (but not

orthonormal) asΛpcΛpc′ = S2
1. The orthonormal structure ofFpc and orthogonal structure ofΛpc

imply that the parameters are identified up to sign. That is,FpcΛpc = FpcκκΛpc = Fpc,∗Λpc,∗ where

Fpc andFpc,∗, andΛpc andΛpc,∗ will have the same structure only for a diagonal matrixκ with the

ith diagonal element equal to+1 or -1.4 This lack of identification is resolved by fixing the sign

of, say, the first row ofU to be non-negative (but not simply positive). Such a restriction gives a

particular orientation of the vectors inU in their space, but in no way restricts the space they span

and, as the transformation involvingκ is homeomorphic, we can regardU,S andV as identified for

any practical purposes and, in particular, our purpose. As there exists a specification that is both

identified and invariant to ordering, this raises the question as to whether there is an identification

problem. Rather, it appears there is a specification problem that induces a lack of invariance.

In a working paper version of this paper, we show how one can move from one non-invariant

specification to another via simple transformations. The existence of this mapping is important

3In fact, Bai and Ng use
√

T times the eigenvalue ofyy′. This proportional term is not important for the discussion
here so we ignore it.

4If κ were not of this structure then the restrictionΛpcΛpc′ = S2
1 would be destroyed by the transformation. Thus

this restriction implies identification against such a transformation.
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as we will show how we can map from our invariant specification to one of those in this section,

which implies we can then map to both specifications from ours. The transformation from one

non-invariant specification to another, with a given ordering of the variables, is possible because

all of the specifications impose the same restriction on the parameter space. That is, they all assume

that a particular set ofk columns are linearly independent. This assumption does not hold at all

points in the parameters space when changing the order of the variables so it is not possible to map

homeomorphically between specifications with different variable orderings.

4 Empirical applications

In this section we present two empirical examples to demonstrate the effect of lack of invariance

of other approaches and that our approach achieves invariance. We also present evidence on the

efficiency of the sampling algorithm.

4.1 Currency Exchange Rates

We use data on international currency exchange rates relative to U.S. dollar over a time period

of 1045 business days beginning in January 2007 and ending in December 2010. The returns are

computed asyit = 100(pit/pi,t−1 − 1), wherepit denotes the daily closing spot rate. We first use six

exchange rates and at the end of this example we expand the dataset to 20 exchange rates. The six

series we analyze first are the Australian Dollar (AUD), Euro (EURO), South Korean Won (KRW),

Japanese Yen (JPY), Canadian Dollar (CAD), and British Pound (GBP). These represent some of

the most heavily traded currencies over the period. The returns are plotted in Figure??.

We fit the data using the static factor model in (??) whereyt is the vector of six observed

currency returns,ft ∼ iidN (0, Ik) is a 1× k vector of unobserved factors,Λ is ank × n matrix

of factor loadings. We first impose the identification assumption thatΛ is upper triangular with

positive diagonal elements. We then compute the marginal likelihoods for four models. Using the
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ordering (AUD, EUR, KRW, JPY, CAD, GBP), we compute a single-factor model and then a two-

factor model. Next, with the ordering (AUD, KRW, EUR, JPY, CAD, GBP), we again compute a

single-factor model and then a two-factor model.

The log marginal likelihoods for the non-invariant specifications are computed via the method

of Chib (1995) using 100 parallel chains each of length 50000. The results are reported in Table 1.

As the two marginal likelihoods for the models with one factor are almost the same (i.e., ordering

made no difference) we only report one of these. The computed marginal likelihoods for the two-

factors provide striking evidence of the effect of reordering. The log marginal likelihoods differ by

about 142.

Under the ordering (AUD, KRW, EUR, JPY, CAD, GBP) there is a very strong preference for

the two factor model over the one factor model with a log Bayes factor of -63.6. However, under

the ordering (AUD, EUR, KRW, JPY, CAD, GBP), there is a very strong preference for the one

factor model with the log Bayes factor of 78.3. The reordering of the variables has shifted the

evidence on the number of factors in the opposite direction. The invariant specification selects a

model with two factors over the one factor model with a log Bayes factor of 645 (forM = Σ). The

evidence for two factors is therefore overwhelming.

Figure?? reports the inefficiency factors for blocks of parameters from the model estimated

with the Geweke and Zhou specification (GZ) and the parameter expanded invariant model (PX).

The inefficiency measures give an estimate of the number of draws needed to have as much in-

formation about the posterior as we would obtain from one independent draw. The smaller the

inefficiency factor the better is the sampler. It is clear that the parameters are generally much more

efficiently estimated using the expanded parameter specification. These results are consistent with

those found in Ghosh and Dunson (2009). The distributions of both the loading matrix,Λ, and the

factors,F, are less disperse and lower for the parameter expanded model, but this is also true for

the idiosyncratic variances,Σ, and the exogenous variables coefficients,β.
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To illustrate how the method performs in higher dimensions, we add toy 14 additional cur-

rencies, so thatn = 20. In order to control for possible serial correlation, we use the model with

exogenous variables in (??) with the intercept term and one lag ofyt in Xt, so thatm = 21 and

T = 1043. Because the SDDR has a high variance in high dimensions, we calculate the marginal

likelihood using the adaptive importance sampling method proposed in Chan and Eisenstat (2015).

Specifically, an importance sampling density for (β,Λ,Σ) is first obtained by approximating the

joint posterior density. Then we compute the importance sampling estimate using the integrated

likelihood, that is, the conditional density of the data marginal ofF, which is available analytically.

For each factor model, 10000 posterior draws are used to compute the importance sampling den-

sity. Then, 100000 importance sampling draws are obtained to calculate the marginal likelihood.

Table 2 reports log marginal likelihoods and numerical standard errors, showing that the marginal

likelihood improves up to the model with 5 factors and then decreases, indicating that the model

with 5 factors is the most adequate.

4.2 The Number of Factors Driving US Macroeconomic Indicators

The dataset is obtained from Stock and Watson (2009), which consists of 190 quarterly observa-

tions from 1959Q3 to 2006Q4 onn = 109 macroeconomic variables. Stock and Watson (2009)

provide a detailed list of the data and its transformation in terms of logs and differencing. The

dataset includes variables on GDP, industrial production, capacity utilization, purchasing man-

ager’s indices, labor force statistics, housing starts, consumer prices, commodity prices, average

hourly earnings, productivity, interest rates, yield spreads, exchange rates, stock prices, money

bases, business loans, consumer credit and consumer expectations. The data are first standardized.

In Table 3 we report the sums of log predictive likelihoods for the last 10 years using ak-factor

model, withk = 1, . . . , 7. Alhough Stock and Watson (2009) used a dynamic factor model, here for

simplicity we use the static factor model of Section 2. Predictive likelihoods are the one-step ahead
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predictive density evaluated at the realized outcome (see Geweke and Amisano 2010 or Geweke,

1996). Due to the large dimension ofyt, predictive likelihoods can be calculated more accurately

than the SDDR, especially when parallel computing is available. The best performing model is the

one withk = 6, which gains as much as 25 points in the log scale with respect to the second best

model (k = 7). This result is within the range suggested by Stock and Watson (2009), who used

the method of Bai and Ng (2002) and found the rank to be between 2 and 10 depending on the

criterion used.

5 Concluding remarks

In this paper, we propose a specification for the static factor model that requires no ordering re-

strictions and so the choice of number of factors cannot depend upon the chosen ordering. By

augmenting the posterior with a number of unidentified parameters with appropriate priors, the

model can be computed using standard distributions and the draws are relatively efficient.

The specification we propose nests many of the existing and popular specifications used in

factor analysis. Thus each of these specifications are attainable directly from the output from

estimating our specification.

Although for convenience we have only considered the static factor model, this approach is

readily extended to allow dynamics in the state equation. Such an extension would involve using

an informative prior on the spacesp(F) such as the orthogonal projective Gaussian distribution as

used in Koop, Ĺeon- Gonźalez and Strachan (2011). This would involve transforming fromF to

Fc = RF where the matrixR captures the dynamics inFc. For example, if the rows ofF follow a
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random walk asfc,t = fc,t−1 + ft = Σt
i=1 fi then we would defineRas

R=




1 0 ∙ ∙ ∙ 0

1 1 0
...

. . .
...

1 1 ∙ ∙ ∙ 1




.

Alternatively R = R(ρ) may be a function of parameters to allow richer dynamics such as in

autoregressive processes. For example, anAR(1) state equationfc,t = ρ fc,t + ft = Σt
i=1ρ

t−i fi and so

in which case we defineRas

R(ρ) =




1 0 ∙ ∙ ∙ 0

ρ 1 0
...

. . .
...

ρt−1 ρt−2 ∙ ∙ ∙ 1




.

The full matrix of factors then becomesFc = R(ρ) F which implies a prior for a process with

a zero mean process with covariance matrix(Ik + cλΛΛ′)
−1 ⊗

(
R(ρ)′R(ρ)

)−1 .

Another implication of the invariant specification, which we have exploited in this paper, is

that we are able to compute the Bayes factors for the number of factors using the Savage-Dickey

density ratio. This approach requires only the conditional posterior and the conditional prior for

Λ. This greatly simplifies the computation of the posterior probabilities. This approach cannot be

used in the non-invariant specifications as they exclude the pointΛ = 0 from the support of the

loading matrix parameter.

In computing the models in this paper, it became evident that there is a relationship between the

computational efficiency and accuracy of marginal likelihood estimates, and the proximity of the

posterior to the point of discontinuity. Models that are specified such that the posterior is invariant

to reordering tend to have lower numerical standard errors. The accuracy of estimation of the

marginal likelihood plays an important role in the confidence we have in the conclusions we make.
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This relationship is a topic of current research.
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Appendix: Conditional Posterior Densities

The likelihood function can be written as

L ∝ |Σ|−T/2 exp

[

−
1
2

tr
(
Σ−1 (Y− Xβ − FΛ)′ (Y− Xβ − FΛ)

)]

so that the conditional posteriors can be readily derived. First define

a =




vec(β)

vec(Λ)



=




b

λ




W = [In ⊗ X In ⊗ F] = (In ⊗ ω) ,

ω = [X F] ,

and f = vec(F) . Vectorizing theT × n error matrixε gives the useful linear forms forf anda. Let

y = vec(Y) , then letx = (In ⊗ X) andl = (Λ′ ⊗ IT) , and definẽy = y− xbsuch that we can write

vec(Y− Xβ − FΛ) = y− (In ⊗ X) b−
(
Λ′ ⊗ IT

)
f

= ỹ− l f

= y− (In ⊗ X) b− (Ik ⊗ F) λ

= y−Wa

As the vectorsf anda have normal priors and enter the likelihood linearly (conditional on the

other parameters) the conditional posteriors result from standard computations. Specifically, the

conditional posteriors have the following forms:

f |β,Λ,Σ,Y ∼ N
(
f ,VF

)
, a|F,Σ,Y ∼ N

(
a,Va

)
, σ2

i |a, F ∼ μiχ
−2
ν
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where

f = VF

(
ΛΣ−1 ⊗ IT

)
(y− xb) = vec

(
(Y− Xβ)Σ−1Λ′

[
Λ

(
Σ−1 + cλM

−1
)
Λ′ + Ik

]−1
)
,

VF =
[
Λ

(
Σ−1 + cλM

−1
)
Λ′ + Ik

]−1
⊗ IT ,

a = VaW
′
(
Σ−1 ⊗ IT

)
y = Va




vec(X′YΣ−1)

vec(F′YΣ−1)



,

Va =
[
W′

(
Σ−1 ⊗ IT

)
W+ V−1

a

]−1
=




Σ−1 ⊗ X′X Σ−1 ⊗ X′F

Σ−1 ⊗ F′X Σ−1 ⊗ F′F
+ V−1

a




−1

Va =




Σ ⊗
(
X′Xcβ

)−1
0

0 M ⊗ (cλF′F)−1




y = vec(Y)

μi = hii

whereν = T + m + ν, when M = In and ν = T + k + m + ν, when M = Σ. In the above

expression,hii is the ith diagonal element ofH, andH = ε′ε + νΩ + cββ′X′Xβ whenM = In and

H = ε′ε + νΩ + cββ′X′Xβ + cλΛ′F′FΛ when M = Σ. Thenotationμiχ
−2
ν

refersto μi times an

inverse chi-squaredwith ν degrees of freedom (e.g. Lee (2012, p.377)).
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Table 1: Log marginal likelihoods and the corresponding numerical standard errors for the com-
petingmodels.

Model log marginal numerical
likelihood standarderror

1-factor (AUD, KRW, EUR, JPY, CAD,GBP) -7572.9 3.40
2-factor (AUD, EUR, KRW, JPY, CAD,GBP) -7636.5 5.64
2-factor (AUD, KRW, EUR, JPY, CAD,GBP) -7494.6 1.16
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Table 2: Logs of Marginal Likelihood with 20 exchange rates and Numerical Standard Errors.
k 1 2 3 4 5 6 7

Log ML -19092 -18516 -18397 -18335 -18324 -18367 -18412
NSE 0.08 0.15 0.16 1.24 3.02 4.97 3.86
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Table 3: Sums of predictive likelihoods in thek-factor model.
k 1 2 3 4 5 6 7

-5545.0 -5493.0 -5425.2 -5400.1 -5388.0 -5335.3-5360.9
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Figure 1: Daily returns of the six currencies.
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Figure 2: Box and wisker plots of inefficiency factors for blocks of parameters:(Λ, β, F,Σ) . The
models were estimated using Gibbs sampling.GZ refers to the model with the upper triangular
Λ1 with positive elements on the main diagonal, and PX refers to the parameter expansion of the
invariant specification.
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