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14.4 Non-nested

So far in this chapter we have

Non-nested model for state and year coefficients

The death penalty model had several predictors in X, includ g measur
frequency that the death sentence was imposed, 1.:he backlog of ca.pltvj ,
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In addition, we included indicators for the years from 1973 to nd tl
states (all of those in this time span that had death penalty laws). The regre
model with all these predictors can be written as

yi ~ Bin(n;,p;)
pi = logit—l(xi.@+aj[i]+"Yt[i])a

where j indexes states and ¢ indexes years. We complete the multil
distributions for the state and year coefficients,
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6.3, where the zi;s are computed based on estimated probabilities p;, and > z? is
compared to a X distribution with degrees of freedom adjusted for the number of
coefficients estimated in the model.

Beta-binomz’al model. There are two natural overdispersed generalizations of the
multilevel binomial regression (14.15). The first approach uses the beta-binomial
distribution:

y; ~ beta-binomial(n;, p;,w),

where w > 1 is the overdispersion parameter (and the model with w = 1 reduces to
the binomial).

Binomial-normal model. The other direct way to construct an overdispersed bino-
mial distribution is to add normal errors on the logistic scale, keeping the binomial
model but adding a data-level error &; to the linear predictor in (14.15):

with these errors having their own normal distribution:
E,‘ T N(O, O'g)

The resulting model reduces to the binomial when o¢ = 0; otherwise it is overdis-
persed.

With moderate sample sizes, it is typically difficult to distinguish between the
beta-binomial and binomial-normal models, and the choice between them is one of
convenience. The beta-binomial model adds only one new parameter and so can be
easier to fit; however, the binomial-normal model has the advantage that the new
error term &; is on the same scale as the group-level predictors, a; and 7, which
can make the fitted model easier to understand.

14.5 Bibliographic note

Multilevel logistic regression has a long history in the statistical and applied liter-
ature which we do not attempt to trace here: the basic ideas are the same as in
multilevel linear models (see references in Sections 12.10 and 13.8) but with com-
plications arising from the discreteness of the data and the nonlinearity of some of
the computational steps.

The example of state-level opinions from national polls comes from Gelman and
Little (1997) and Park, Gelman, and Bafumi (2004). The analysis of income and vot-
ing comes from Gelman, Shor, et al. (2005); see also Wright (1989), Ansolabehere,
Rodden, and Snyder (2005), and McCarty, Poole, and Rosenthal (2005) for related
work. Figure 14.10, which simultaneously displays patterns within and between
groups, is related to the “B-K plot” (discussed by Wainer, 2002, and named after

Baker and Kramer, 2001). '
The multilevel framework for item-response and ideal-point models appears 1n

Bafumi, Gelman, and Park (2005). See Lord and Novick (1968) and van der Linieri
and Hambleton (1997) for more on item-response models, and Eooloaiid ? (:leg(t)i;
e -

199 i ' 2002a) for more on 1
(1997), Jackman (2001), and Martin and Quinn )models with aliasing.

models. . : ifiabilit blems in
els. Loken (2004) discusses identifiability pro bman, et al. (2004). See

The death sentencing example comes from Gelman, Lie .
Donohue and Wolfers (2006) for an overview of some of the research literature on

death sentencing.
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