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Abstract

This note introduces classical and Bayesian application of the expecation
maximization (EM) algorithm with full details required for implementations.
EM calculates maximum marginal likelihood (MML) estimates in the
presence of missing data, which is marginalized out of the complete

data likelihood. The algorithm iteratively refines a current guess of

the parameters by maximizing marginal likelihood with respect to

the expectations for missing data with the current parameter guess.
Standard errors are calculated with observed Fisher information.

In the Bayesian setting, the max marginal a posterior (MMAP)
parameter values can be estimate by EM. These may then be used to
locate a Laplace approximation of the posterior. Posterior predictive
inference may be carried out using the Laplace approximation
directly, using sampling from the approximation, or by using the
approximation as an importance sampling generator.
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Monte Carlo (MC) methods enable general expectation calculations
and may also be used to calculate derivatives of the expectations
being maximized. Generalized expectation maximization (G-EM)
replaces the maximization with a hill-climbing step. Stochastic
averaging expectation maximization (SA-EM) smoothes expectation
estimates over iterations.

Maximum Marginal Likelihood

The traditional application of the expectation maximization algorithm
is to computing maximum marginal likelihood estimates. Maximum
marginal estimates are required in situations where simple maximum
likelihood estimates do not exist.

Complete data likelihood

Suppose we have a data sampling density p(y,u | #) where

* y is observed data,
* 1 is missing data, and
* 0 is a parameter vector.

Missing data in this context may be construed very broadly. It
may literally be missing values in a survey, such as covariates or
outcomes, or missing measurements from a broken monitor. The
missing data may also be the censored times of death for animals in a
mark-recapture study or patients in a survival analysis.” In other
cases, the missing data is actually a latent item-level parameter,
such as varying slopes in a multilevel regression or mixture-model
responsibilities.?

If both the data y and the missing data u are known, then p(y, u |
6), considered as a function of the parameter vector 0, is known as
the complete data likelihood function,3

L(0) =p(y,ul0).

Because the missing data u will not be known in practice, the
complete data likelihood is of limited use by itself. It is tempting to
try to derive a maximum likelihood estimate for the missing data and
parameters,*

(u*,0%) = argmax, q) p(y,u|6).
= argmax, g p(y | u,0).

For many problems of interest, such as hierarchical and multilevel
models, there are no finite u and 6 that jointly maximize p(y, u | 6).5
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* The censoring is because a patient
survived beyond the end of the study
or an animal was last observed alive at
a given time; in both cases, their times
of death must be imputed.

2 Jtem-level effects are often referred to
as “random effects.” The “fixed effects”
(i.e., parameters not varying by level)
are included in 6.

3 Traditionally in frequentist statistics
and probability theory, p(y, u | 6) would
be written as p(y, u; 6) to distinguish
the variables # and y (in Roman letters)
as being random and the variable 6 is

a fixed, but unknown parameter, and
hence note modeled as random. Here,
we use Bayesian notation throughout
despite its implication that 6 is being
treated as random when being used
conditionally.

4 The second step follows by Bayes’s
theorem, which applies in this
frequentist setting because u is being
modeled as random.

5 An example is when u are item-

level effects governed by group-level
parameters in 6. As the group-level
variance goes to zero and the item-level
effects approach the group-level mean,
the likelihood grows without bound.
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Marginal data likelihood

To get around the technical problem of maximum likelihood estimation
when there is no maximum, the unobserved data can be marginalized
out, leaving the marginal data likelihood, which is a function of 6 for

fixed observed data y ,6 ¢ The integral over the domain U of
u may involve summation if U has
discrete components.
L) = ply|o) P

Ju ply,ul6) du
Ey o) py | 1,0)].

Maximum marginal likelihood estimator

The maximum marginal likelihood (MML) estimate” for 6 is defined 7 An estimator is just a function

from data to a numerical value

o . of a parameter, called an estimate.

likelihood function, Representing the data as random
variables, the estimate will be a derived

0* = argmax, E(Q) random variable, the properties of
which determine quantities of interest
= argmax, p(y ‘ 6) . such as standard errors and confidence

intervals.

to be the value of the parameters that maximizes the marginal

= argmaxy E, g [logp(y |u,0)].
The final formulation as an expectation points the way toward the
EM algorithm.

Penalized Maximum Marginal Likelihood

Shrinking estimates toward zero can reduce the variance of the

estimator at the cost of introducing some bias.® The goal is to improve 8 As a function of random data y, an
predictive accuracy by reducing overfitting. More generally, regularization estimator’s expectation is

pulls estimators toward a predefined value; shrinkage regularizes to E, o) [0(y)] = /y 0(y) - p(y | 0) dy
zero.

. X . The mean square error of an estimator is
Regularization may be accomplished by adding a penalty term to

the likelihood function. The penalized likelihood function is mse(0(y)) - E f W [(e(y) - 9()y]\ 0)dy
- Y
L (9) = E(Q) + f(g) The variance of an estimator is its
f variance,
where f(0) is a penalty function.9 var(B(y)) = Epye[var(d(y))] .
2
Nothing changes for the EM algorithm if the likelihood function =/, (é(y) —E, 0 [é(y)]) ply | 6)dy.
L(0) is replaced with a penalized likelihood function L (6). The bias of an estimator is its expected
error,
Estimating Missing Data bias(f) = (y\A ) [0(y) - 9} ~
= 0(y) —6) - ply | 6) dy
Often the missing data is of interest itself. Given the maximum 9 A common penalty function is the
marginal likelihood estimate for the parameters, quadratic,
) = —Ar07-0
= AT 65

where A > 0 is a tuning parameter
controlling the amount of shrinkage.
This penalty is equivalent to the log
density of a normal prior on 6, but
frequentists use the term “penalty” to
avoid treating 6 as random.
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0 = argmax, p(y | 0)
= fu p(y,u|6)du.

the missing data may be estimated by fixing the parameter value
and maximizing the joint likelihood for u,

u* = argmax, p(y,u | 0%).

Uncertainty in missing data

The observed Fisher information matrix may be used to estimate
standard errors using the curvature of the log density for the missing
data u at the maximum marginal likelihood estimate 6*. The estimated
standard error for the estimate u,; is given by

Nj—=

se(uy) =~ <_BunZ logp(y,u |6 ))

This standard error estimate is biased in that it systematically
underestimates the true error due to the use of a fixed value of 6*.1°

The Expectation Maximization Algorithm

The expectation maximization (EM) algorithm calculates maximum
marginal likelihood estimates by iteratively performing maximizations
over an expectation.”™ The algorithm starts with a randomly initialized
parameter value, then alternatively calculates the expectation of the
missing data given the current parameter value, then maximizes the
parameter value given the expectation of the missing data.

The Algorithm

The EM algorithm involves the following steps.™

e Inputs: (a) complete data likelihood function p(y,u | ) for
observed data y, missing data u, and parameters ¢, and (b) the
observed data y.

1. Initialize 6() such that p (y | 6(0)) > 0.

2. While the sequence has not converged,*3
o+ = argmax, Q(6 | 61)

= argmaxy ]Ep(u|y,9<t>) [log p(y,u|6)]

= argmax, [y logp(y,u|6)-p(u|y,6")du.

EXPECTATION MAXIMIZATION 4

© This is the same way that the
maximum likelihood estimator for
variance is biased to underestimate
because it is based on the sample
mean, not the true mean. The unbiased
estimate (known as sample variance),
divides the sum of square differences
from the sample mean by N — 1 rather
than N as is done for the MLE.

" It may also be used to calculate
maximum marginal penalized
likelihood estimates and find posterior
modes of a Bayesian model.

> Statistics notation is heavily
overloaded. The yin p(y,u | 0) is a
bound variable the name of which is
chosen to disambiguate p(), which

is overloaded for every density. The
observed data y is a bona fide value.
To make matters even more confusing,
the observed data y will be plugged
into the likelihood function p(y,u | ),
setting y = y in notation that should be
near and dear to users of R.

3 Convergence is determined when the
difference between successive updates
falls below an absolute threshold,

‘6(t+1) _p® ‘ < s
or relative threshold,

‘ plt+1) _pt ’

3 (oo

rel
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3. Return the final value 6(*).

The quantity Q(6 | 1)) is the expected log complete data likelihood for
parameters § where the expectation is taken over the missing data u
given the previous parameters o).

This is just a framework for an algorithm—it does not specify how
to calculate the innner expectation or perform the maximization.
Traditionally, these were calculated analytically; see the appendix on
analytic EM for an example.

Monte Carlo Expectation Maximization

Monte Carlo expectation maximization (MC-EM) uses Monte Carlo
methods to evaluate the integral in the definition of

Qo | G(t)) = ]Ep(u‘yle(t))[log p(y,u|6)]
= Jylogp(y,ul0) p(u| y,00) du.

All we need for a Monte Carlo solution to this integral is a way to
simulate independent draws for u conditioned on y and G(t), ie.,

u®, My (u | y,G(t)) .

Given these draws, the Monte Carlo estimator for Q(6 | 8(*)) using M
simulation draws is

. ; 1 X
Qu(o10W) = ML losp(yul6)

The central limit theorem ensures that the Monte Carlo estimate
converges to the true value,

i 0(e197) = 0fe ).

The rate of convergence, i.e., rate of reduction in expected error, is

(] (1 / v M 14 * For example, an estimate based on

g 100 draws has ten times the expected

For simple models, like a mixture model, it is relatively straightforwar
error of one based on 10,000 draws.

to take independent draws of u conditioned on y and 8*). For more
general models, we need either an approximation from which it is
easier to sample (and perhaps adjust via importance sampling) or we
need to move to Markov chain Monte Carlo methods. For the time
being, we will simply assume we can draw the required u(), ..., u(M)
in order to sketch out the Monte Carlo EM algorithm.

Given the estimator Q (9 | G(t)) for Q (9 | 9(t>), the M-step of
the expectation-maximization algorithm becomes

o+l = argmax, Qum (9 \ G(t))

= argmax, % . 2%21 log p (y | u(’"),ﬂ)
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Putting this all together gives us the Monte Carlo expectation maximization

(MC-EM) algorithm for maximum marginal likelihood estimates,

1. Set () to a value such that p (y | 9(0)) > 0.

2. While the sequence has not converged,

i. draw

ut) oy tM) p (u | y,G(t))
ii. set u
01+ = argmax, % ) logp (y | u(t'm),é)) :

m=1

3. Return the last ).

Number of Monte Carlo simulations and precision

In early iterations, the value of () is far from the true value. In these

situations, a small number of Monte Carlo draws (") may be more

computationally effective than trying to estimate Q (9 | Q(t)) more

precisely. During later iterations when () is close to the true value
of 6, it will be necessary to increase M in order to increase precision
in (). How many steps are necessary will depend on the precision
required in the final answer.

The Monte Carlo EM algorithm is easily modified to accomodate
a schedule My, ..., M;,... of draw sizes. These may even be chosen
adaptively based on the history (1), ... ("),

Markov Chain Monte Carlo Expectation Maximization

The Monte Carlo expectation maximization algorithm assumes
the u(*") can be drawn indepenedently. In black-box situations, it
is often possible to take draws using Markov chain Monte Carlo
(MCMC) when there is no easy way to take independent draws.

b utM) form a

Rather than being independent, the draws ul
Markov chain.®>

The EM algoirthm works the same way if the draws of u are
made using Markov chain Monte Carlo (MCMC) instead of being
independent Monte Carlo draws. Convergence follows from the
Markov chain Monte Carlo central limit theorem (MCMC CLT) at a
rate of at least O (1/+/Mcgs), where M is the minimum effective
sample size for MCMC draws.'® The resulting algorithm is the
Markov chain Monte Carlo expectation maximization (MCMC-EM)

algorithm.

(t,m)

5 A Markov chain yy,...,yy is a
sequence of variables such that

PWnr1 | Y1 - yn) = p(Ynra | Yn)-

The variables in a Markov chain are
most often autocorrelated rather than
independent or anticorrelated.

6 The effective sample size Mg for a
sequence of draws indicates the number
of independent draws that would
provide the same error bounds.
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Stochastic Averaging Expectation Maximization

The stochastic averaging expectation maximization (SA-EM) algorithm
replaces the independent estimates Q (6 | 9(”) with a rolling
average, the value for which at step t will be written with a subscript
as QAE\? (6 | G(t)>.

At step zero, the estimate is set the same way as before,

O\ (016) = Qm(e100).

At each iteration, the estimate is updated by averaging the estimate
based on the current parameters and the previous estimate,

O (0160) = A-Qu(0169) + (1-2)-Q (0101).

The (MC)MC estimate Qy, is weighted by A and the previous
estimate Qg\z) is weighted by (1 —A). This has the effect of regularizing
the estimate of QE\Z) The intended goal is, as usual with regularization,
to reduce the expected error of QE\Z) relative to Qs by reducing the
variance.

The update rate A may vary with the iteration; just replace A with
A+ and provide some schedule for the values of A; rather than a fixed
value of A. This may be useful, for example, in conjunction with
schedules for increasing M over iterations.

This regularization strategy may be used with any of the other EM
algorithms described in this note.

Generalized Expectation Maximization

It turns out that replacing the maximization step of EM with a simple
hill-climbing step does not affect convergence of the algorithm (other
than rate). The resulting algorithm where maximization is replaced
with a a hill-climbing step is called generalized expectatino maximization
(G-EM). This M-step modification can be applied independently of
any of the E-step variations discussed in this note.

Stochastic Generalized Expectation Maximization

The hill-climibing step in the M-step of the EM algorithm may be
done stochastically. That is, it may be done using a subsample of the
data so that it is only hill climbing in expectation.

Usually the update rate with a stochastic hill-climbing algorithm

must be carefully scheduled over time to ensure convergence.'” 7 The schedule for stochastic
maximization is usually required to
meet the Robbins-Monro conditions,

ie.,
ZG,‘ = 0,
ZetZ < oo.

and
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Gradient-Based Monte Carlo Expectation Maximization

For generalized models where the maximization in the M-step must
be done with generic optimization techniques, gradients can be used
to accelerate optimization.

Because expectations and derivatives are linear operators, we can
distribute derivatives through them,

d d
SGELE)] = E| 5 50)].

The case of interest is where the function is the log density with
respect to the draw ultm),

9 . P)
9 my - 2 . (1)
aGQm(GIG ) aG/P(y,u,\G) p(uly,60%) du

J n
5 Z log p(y,u"™) | )

Q

= %310 ultm) | 9)
- 78 gpy’

Being able to compute these derivatives for any value of 6 means that
optimization algorithms based on gradients, such as gradient descent
or limited-memory quasi-Newton methods like L-BFGS, may be used
for the M-step.

Automatic differentiation

Automatic differentiation may be used to differentiate a model in
cases where the derivatives are too time comsuming or error prone
to code by hand. All that is needed is a program to evaluate log p(y |
u,0) and the values of y, u, and 6 at which derivatives are required.

Gradient-Based Marginal Optimization

Gradient-based marginal optimization (GMO) combines several
ideas:

* Monte Carlo expectation maximization,

¢ Laplace approximations for the inner Monte Carlo step,

* importance sampling from Laplace approximation to compute the
expectation,

* automatic differentiation for derivatives of expectation, and

® generalized expectation maximization.

Putting this all together, the gradient-based marginal optimization
(GMO) algorithm is as follows.

EXPECTATION MAXIMIZATION 8
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1. Initialize (©) such that p(y | 6p) > 0
2. While the sequence has not converged,
(i) simulate M draws from the Laplace approximation

u®, ., u™

~ Normal(py, Xy)
with location vector

iy = argmax, p(u | y,()(t))

-1
”—P‘M>

and the covariance matrix

92
= | — (t)
Zu <8u2 logp<u |y, 0 )

(if) approximate the gradient by

w2(e10%)

R

EQAM (9 | g(f)>

%

P 5 IOgPy, ") | 9)
Zm 1 Om mZ:

- ( <t>)

with importance weights

p(u' Iy )
Normal (u(™) | u,, X,,)

o =
(iii) step along the approximate gradient,
o+l — g(t) 4 ¢, . G(QW)
with stepsize schedule ¢; for t =1,2,....
3. Return the last 6().

This algorithm sketch leaves open the stepsize schedule €;. Typically
some kind of decreasing schedule is required for asymptotic convergence
(in the number of iterations) to the correct value with stochastic
gradient descent algorithms like these.

Appendix: Maximum Marginal a Posteriori Approximations

Bayesian models

A Bayesian model provides a joint density p(y, u,6) of the observed
data y, unobserved data u and parameters 6. In a Bayesian model,
there is nothing special about the unobserved data—it is treated the
same way as an unknown parameter.
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Bayesian posteriors

The usual quantity of interest for a Bayesian model is the posterior
distribution

p(y | u,6)- pub)
p(y)

or one of the marginal posteriors p(6 | y) if only the parameters are

pO,uly) =

of interest or p(u | y) if only the missing data is of interest.

Fully Bayesian Posterior Predictive Inference

We usually don’t care about estimates other than as a very rough
indication of the location of the posterior. Posterior predictive inference
requires integrating a function of the parameters weighted by posterior
density.'®

Bayesian estimators

One form of Bayesian posterior predictive analysis is Bayesian parameter
estimation. For example, the standard Bayesian point estimate for a
parameter is the posterior mean, or expected value conditioned on

the observed data,

ba = E[uly
= Jou (6,u)-p(6,u|y)do du.

The error in an estimate 0 is defined to be the difference from the
true value, i.e., @ — 0. The posterior mean estimates enjoy the pleasant
property of being the estimates that minimize the expected squared
error, or equivalently, mean square error.' The posterior median
minimizes expected absolute error.*°

Maximum marginal a posteriori estimates

When it is too costly to calculate posterior means or medians, which
usually requires Markov chain Monte Carlo (MCMC) methods, it is
often possible to find the maximum marginal a posteriori (MMAP)
estimates of the parameters 0 as

6* = argmax, p(f |y)

argmax, [, p(u,0 |y) du.
= argmaxy Ep(u\y,G)[P(Gfu ‘ ]/)] .

These estimates may then be used themselves, or as the basis of a
Laplace approximation of the posterior.

8 For example, to compute event
probabilities for an indicator function
¢:0 — {0,1},

Pr(p(6) [y] = E[¢p(0) |y]

= Jo#(6)-p(6|y)do

With a Monte Carlo sample
0M,...,0M) from the posterior p(6 | y),
the sample mean is the estimator,

Pep(@) | 9] ~ - 3 o(6).

m=1

9 Squared error is defined between
a parameter 6 and its estimate 6, as

(6-6)°.
20 Absolute error is |9 - BA‘.
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Expectation Maximization for MMAP

The expectation maximization algorithm may be used to calculate the
MMAP estimate in exactly the same way as it calculates the MML
estimate. The only difference is that Q is defined in terms of the

posterior instead of a likelihood.* 21 If the prior is uniform, the two
definitions are equivalent up to a
t — constant.
QO 10Y) = E,, |, o0)llogp®uly)]

= /up(uﬁly)w?(u\y,@“)) du

The result computes posterior modes.

Appendix: Laplace Approximation

Two concepts traffic under the heading “Laplace approximation”,
one to approximate a density and another to approximate an integral
based on the approximate desnity.

Approximating a distribution

The Laplace approximation is a multivariate normal approximation
to a density with location given by the density’s mode and covariance
by the inverse Hessian at the mode. That is, for a general distribution
p(«), the Laplace approximation

p(a) ~ MultiNormal(pq, Zy)

where
Ho = argmax, p(a).

-1
zxyﬂ>

The Laplace approximation is an approximation of a general expectation

and

92
y = | — 302 log p(w)
Approximating an expectation

of a smooth function f and density p,** 2 The smoothness required will be
second order.

Eyo)[£(0)] = [ £(0)- p(0) o

where 6 has D dimensions.

Let 6* be the point that maximizes the expression being integrated,?>  * Thus f(6) - p(6) must have
a maximum in order for this

0* — ar gmax; f ( 9) p ( 9) ) approximation to succeed.
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Then the Laplace approximation is

2

Eyo[f(0)] ~ £(67)-p(6") J det (—jezlog (F0)- p(6))

9-9*)

The inner term is the determinant of the negative Hessian (matrix of
second derivatives) of f(0) - p(6), evaluated at 6*.

Appendix: Convergence of Expectation Maximization

The EM algorithm will converge if the iterations converge to the true
value,

lim 6 — g.
t—o0

The proof of convergence hinges on each §(!+1) improving the
approximation over the previous (), or more specifically by showing
that the expected log complete data likelihood relative to 8() improves
in each iteration. Specifically, if §(!) hasn’t already converged to the
true value, i.e., if 0() # 6, then

(o |et) > g(e[e®).

The rest of this section expands on why this condition is sufficient.
The marginal log likelihood for parameters 6 may be defined on
the log scale for observed data y by marginalizing the missing data u,

logp(y|6) = log %

= logp(y,u|6)—logp(ul0)

During the E-step of the EM algorithm, we need to take the
expectation of the log marginal likelihood with respect to the distribution
of missing values governed by the current parameter values (),

E,(u|yo0)logpy[0)] = E, |, g0)[logply,u]|8)—logp(u]8)]
Epu | y,00) logplul0)] = E, |, 40)logpu|0)]
= Q(0169) +H[po | pyo]

where the Q(- - -) term is as before and the H][- - - ] term is the cross-
entropy between the missing data posterior with parameters 6 and

9(1‘)/24 > In general, cross-entropy is defined
between from a density p;(u) to a

po() = pluly,0) density pa(u) as

H u u = -E, |[lo u
pg(t)(u) _ P(” ‘ y’e(t)) [p1(u) | p2(u)] p1( )[ g pa(ut)]

— [y log pa(u) - p1(u) du.

We use “from” and “to” in the
definition to distinguish argument
postions because, in most cases

of interest, H[p1, p2] # H[pa, p1)-
Information theoretically, cross entropy
is the expected cost in nats, which are
like bits, only in (like bits, only in the
natural logarithm base ¢, to encode a

u drawn from distribution p; (1) using
p2(u) as the basis of the code.
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The left-hand side of the equation is constant inside the expectation,
so the result reduces to

logp(y |6) = QO]6Y) + H[pg | pyov]

Substituting in for the above,

log p(y | 6) ~logp(y | 01) = (Q(0 01 +H[po | py))
— (QO" 16) +Hlpyo | poo])

= (Q]09)—Q(e" |61))
+ (Hlpo | o] — Hlpgin | po])

By Gibbs’ inequality,25 5 Gibbs’ inequality states that for
distributions p; and p»,
H{po | pow] = Hlpgw | Po] H[p1 | p2] > Hipa | pa).

It follows that cross entropy from
a fixed distribution p; to another
distribution p, is minimized at p, = p;.

That means H[ pg | py] —H[pyo) | pg] is positive, and thus
log p(y | 6) —logp(y | 01) > Q(6]6") — Q6" | 6).
Substituting 8(+1) in for 6 yields
log p(y | 041)) —logp(y | 61)) > QoM+ | o)y — Q(e®) | o(1)),

Finally, because
o+l — argmax, Q(6 | 61),

it follows that the right-hand side is non-negative, and thus

logp(y | 01U 1) > log p(y | 61).

Appendix: Analytic Expectation Maximization

In the traditional applications of EM to mixture models, hidden
Markov models, or missing data problems with sufficient statistics,
both the marginal expectation calculations and maximization would
be computed analytically. This is particularly straightforward when
the component distributions are drawn from exponential families and
may be optimized as functions of sufficient statistics rather than a
large data set.

For example, consider a mixture of two normals, with unknown
locations pig, 1 and scales 0y, oy for the components and mixing
proportion A for the proportion of items drawn from component 1.

The model is thus2® 6 We write z[n] instead of z, to avoid
the small size of doubley nested
Zy o~ Bernoulli(/\) subscripts.

Yyn ~ Normal (,”z[n]r Oz[n) )
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This yields a log density for a given pair of observed data y, and
mixture responsibility of z, for parameters 6 = (A, u, ) of

log p(yn,zn | 0) = log Bernoulli(z, | A) +log Normal(yy | p(u), Opn))-

Given values of the parameters §(!) = (A1), u(), (1)), it is just a
matter of algebra to derive the required expectations for each n €
1 : N. Rather than an integral, there is a summation over the discrete
domain Z = {0,1} of the z,,. Expanding out the definitions yields

E )z [y 00y 1087 (Y 20 | 0)] = 1 P(anyn, ) log p (zn, yn | 0).

zZn €72

Next, the conditional distribution of the missing z, given 8() and
yn» may be addressed by Bayes’s rule,

Pz lyn00) o p(znya|6®)
= Bernoulli (zn \ )\(t)> Normal (yn | yzn ,(TZ(?)
Discrete distributions can be normalized by dividing over the sum of
the proportional densities of the possible values for z, € Z = {0,1},

_ (= ynt®)
P(Zn | yn,9<t>> plS T o)

Bernoulli(zy | /\(”) . Normal(yn | ygl),az(t))

n

Bernoulli(O | )\(f)) . Normal(yn | y(()”,a(gt)) + Bernoulli(l | )\(f>) . Normal(yn | ﬂgr)ﬁlm)

This needs to be summed over all # € 1 : N and then plugged back
into the expression for the expected complete data likelihood under
the previous parameters, Q(6 | 8()).

In this particular case, it is also easy to do the estimation step.
Because the responsibilities are known in expectation, these may
be used as weights on the observations y, to calculate the maximum
likelihood estimates for jig, pt1 and oy, 01. These are calculated analytically
from the weighted sufficient statistics. For example, p7 is just the
average of y weighted by the expected responsibility,

1
m=\ov—="> Yn - Elzn | y].
! (Z 1]E[Zn|]/> nZ:l " !

The estimate y is defined similarly, with flipped weighting

« 1 . Elz
M (Z 1 E [zn|y> n;yn [zn | 9)).-

Given the estimates y; the scale estimates are just the square root

of the sum of squares weighted again by expectation of responsibility,

X 1 N ] |
o J <XMW> 'HZ::l(y” —us)? - Elzy | y]
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The calculation for o7 is similar.

The maximum likelihood estimates ¢ and ¢ are biased?” because 27 An estimator 0* is said to be biased if
its expected value is not the true value,
i.e., if E[0*] # 6, where the expectation
is taken over the distribution p(y) on

they systematically underestimate true variation, i.e.,

*
]Ep(y) [ 0 ] <. which the estimator is based. This
would be clearer if the estimate was
The underestimate arises because the weighted sum of squared written treating the estimator as a

differences (v, — yS)Z is based on the estimate y of yg rather than function, e.g., Ey(y)[0"(v)]

the true pp. This can be adjusted by slightly modifying the denominator
to subtract 1 from the weighted, total, changing the leading multiplier

to
1

1- 3l Elza [ 4]

Historical Notes

Depmster, Laird, and Rubin (1977) introduced the expectation maximization
algorithm and proved that the algorithm converged to the maximum
marginal likelihood estimate.

Wei and Tanner (1990) introduced the Monte Carlo expectation
maximization (MC-EM) algorithm for both maximum marginal
likelihood and maximum marginal a posteriorio estimation and
established convergence. They also discussed approximate integrals
and Monte Carlo gradient calculations.

Neal and Hinton (1998) introduced several generalized forms of
the EM algorithm.

Deylon, Lavielle, and Moulines (1999) introduced the stochastic
averaging expectation maximization (SA-EM) algorithm and established
convergence.

Kucukelbir, Tran, Ranganath, Gelman, and Blei (2017) introduced
gradient-based maximization of expectations using automatic differentiation,
with applications to variational inference.

Tran, Gelman, and Vehtari (2016) introduced gradient-based
marginal optimization. The stochastic gradient descent approach
they employ was developed by Robbins and Monro (1951).

Rue, Martino, and Chopin (2009) introduced Laplace approximations
for the marginal posterior distributions of parameters (which they
then integrate by quadrature) and the marginal posterior distribution
of missing data conditioned on the parameters.
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