
11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 1 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

1.1 Spatial regression
model

1.2 Random-e!ects
and Response NNGP
models

1.3 Construction of ,A
D

2 Code NNGP Based
Model in Stan

2.1 Intro of
simulation data

2.2 Data block in Stan

2.3 Parameter and
model block in Stan

2.4 User-defined
likelihood function
for NNGP models

3 Simulation study

3.1 Response NNGP
models in Stan

3.2 Random-e!ects
NNGP models for
simulation study

4 Results and
Discussion

4.1 Response NNGP
model for simulation
study

4.2 Random-e!ects
NNGP models for
simulation study

4.3 Discussion

References

1 NNGP Based Models Nearest Neighbor Gaussian
Processes (NNGP) based models
in Stan
Lu Zhang
lu.zhang@ucla.edu (mailto:lu.zhang@ucla.edu)

11/5/2017

1 NNGP Based Models
Nearest Neighbor Gaussian Processes (NNGP) based models is a family of highly
scalable Gaussian processes based models. In brief, NNGP extends the Vecchia’s
approximation (Vecchia (1988)) to a process using conditional independence
given information from neighboring locations. In this section, I will briefly review
response and random-e!ects NNGP models. For more details of NNGP, please
refer to Datta et al. (2016).

1.1 Spatial regression model
We envision a spatial regression model at any location

where, usually, and is a latent spatial process capturing
spatial dependence. Let be the set of observed locations. If we model the
process with a Gaussian process , then a customary
Bayesian hierarchical models for observations on can be
constructed as

Another implementation of GP is to marginalize over the latent process and
construct the outcome process directly with a GP. By integrating out ,
we have a more parsimonious model whose parameters set collapses from

 to . In a Bayesian setting, will be sampled from its posterior
distribution

To distinguish these two models, we shall call the former as a random-e!ects
model, and the latter as a response model. These two models are referred as the
latent variable GP and the marginal likelihood GP in Stan reference manual (STAN
DEVELOPMENT TEAM (2017)).

s

y(s) = (s) + w(s) + ϵ(s) , ϵ(s) (0,) mθ ∼iid τ2 (1)

(s) = x(s βmθ)⊤ w(s)
S n

w(s) w(s) ∼ GP(0, (⋅, ⋅))Cθ
S = { , … , }s1 sN

p(θ) × (w(S) | 0, (S, S)) × (y(S) | (S) + w(S),)Cθ mθ τ2In (2)

w(s)
y(s) w(s)

{θ, w} {θ} θ

p(θ | y(S)) ∝ p(θ) × (y(S) | (S), (S, S) +)mθ Cθ τ2In (3)

mailto:lu.zhang@ucla.edu

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 2 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

1.2 Random-e!ects and Response NNGP
models
Nearest neighbor Gaussian process (NNGP) provides an alternative to the
Gaussian process in the models discussed in the preceding subsection. The
likelihoods of two models basing on NNGP derived from the original Gaussian
process coincide with the Vecchia’s approximation (Vecchia 1988) of the original
models. In particular, a random-e!ects NNGP model has a posterior distribution
proportional to

where is the precision matrix of the latent
process over . Here is sparse and strictly lower triangular with at most

() non-zero entries in each row, and is a diagonal matrix. One can
readily calculate the determinant of by the product of the diagonal elements
in . The likelihood of based on precision matrix serves as a good
approximation to the likelihood of in , while the storage and
computational burden of the former is linear in .

A response NNGP model yields posterior distribution:

where , analogous to random-e!ects
NNGP model, can be treated as an approximation of . Notice
that although one can obtain the response model by integrating out latent
process in a random-e!ects model, the corresponding NNGP model doesn’t have
this property.

1.3 Construction of ,
The details of Matrices , and two models can be found in Finley et al. (2017).
Here we use the response NNGP model to show how to construct matrix and

. Let be at most closest points to among the locations indexed less
than . The th row () of has nonzero entries on positions indexed by

, and the nonzero entries are calculated by

And the th element on the diagonal of satisfies

These equations are derived from the distribution of . The
nonzero entries in each row of are precisely the weights obtained by predicting

, or “kriging”, based upon the values of at neighboring locations, i.e.,

p(θ) × (w(S) | 0,) × (y(S) | (S) + w(S),)C∗ mθ τ2In (4)

= (I − (I −)C∗− 1 A∗)⊤D∗− 1 A∗

w(s) S A∗

M M ≪ N D∗

C∗

D∗ w(S) C∗− 1

w(s) (2)
N

p(θ | y(S)) ∝ p(θ) × (y(S) | (S), { + I)mθ Cθ τ2 }∗ (5)

{ + I = (I − A (I − A)Cθ τ2 }∗− 1)⊤D− 1

{ (S, S) +Cθ τ2In}− 1

A D
A D

A
D N()si M si

i i i > 1 A
N()si

A(i, N()) = (, N())((N(), N()) + Isi Cθ si si Cθ si si τ2)− 1 (6)

i D

D(i, i) = (,) + − (, N())((N(), N()) + I (N(),)Cθ si si τ2 Cθ si si Cθ si si τ2)− 1Cθ si si

E[y()|y(N())]si si
A

y()si y(s)

file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html#mjx-eqn-eq%20random-effects%20model

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 3 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

. And the diagonal elements in are the variance of conditioning on
its’ neighbors in the “past” .

2 Code NNGP Based Model in Stan
In this section, I will use a simulation data to show how to code NNGP based
models e!iciently in Stan.

2.1 Intro of simulation data
We generated response along with a covariate at randomly sited
locations in a unit square domain by the following model:

where the zero-centered spatial random e!ect were sampled from a
Gaussian process with a covariance function specified by exponential:

The predictor were generated from . The setting of parameters is listed
in the code.

rmvn <- function(N, mu = 0, V = matrix(1)){
 P <- length(mu)
 if(any(is.na(match(dim(V), P))))
 stop("Dimension problem!")
 D <- chol(V)
 t(matrix(rnorm(N * P), ncol = P) %*% D + rep(mu, rep(N,
P)))
}

set.seed(1234)
N <- 500
coords <- cbind(runif(N), runif(N))
X <- as.matrix(cbind(1, rnorm(N)))
B <- as.matrix(c(1, 5))
sigma.sq <- 2
tau.sq <- 0.1
phi <- 3 / 0.5

D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0, N), sigma.sq*R)
Y <- rnorm(N, X %*% B + w, sqrt(tau.sq))

N()si D y()si
y(N())si

Y x n= 500

y(s) = + x(s) + w(s) + ϵ(s), ϵ(s) ∼ N(0,)β0 β1 τ2 (8)

w(s)
Cθ

(,) = exp(− ϕ|| − ||), , ∈SCθ si sj σ2 si sj si sj (9)

x N(0, 1)

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 4 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

2.2 Data block in Stan
The following block shows the elements needed for NNGP based models

 data {
 int<lower=1> N;
 int<lower=1> M;
 int<lower=1> P;
 vector[N] Y;
 matrix[N, P + 1] X;
 int NN_ind[N - 1, M];
 matrix[N - 1, M] NN_dist;
 matrix[N - 1, (M * (M - 1) / 2)] NN_distM;
 }

Here the design matrix X contains an initial column of 1s, P is the number of
regression coe!icients, and M is the number of nearest neighbors (maximum
number of elements in each row of sparse matrix). Notice that we
provide three matrices NN_ind , NN_dist and NN_distM :

NN_ind is a two-dimensional array of indices whose th row shows at most
 closest points to among the locations indexed less than .

NN_dist is a matrix whose th row contains the distance of th location to
its selected neighbors.

NN_dist is a matrix whose th row contains the strictly lower triangular
part of the distance matrix of the selected neighbors of th location.

These three matrices are required for constructing the sparse lower triangular
matrix , and the diagonal matrix . Since they are fixed across the MCMC
updates, we recommend user to provide them in the data segment. Next, I will
show how to e!iciently generate the matrices listed above.

2.2.1 Build neighbor index
File “NNmatrix.R” provides a wrapper function in R that uses package spNNGP,
which has a fast algorithm of building neighbor index, to generate the required
matrices in the Stan data segment. Here n.omp.threads indicates the number
of threads to use for parallel processing.

source("NNmatrix.R")
M = 6 # Number of Nearest Neighbors
NN.matrix <- NNMatrix(coords = coords, n.neighbors = M, n
.omp.threads = 2)
str(NN.matrix)

n× n A

i − 1
M si i

i − 1 i

i − 1
i

A D

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 5 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

2.2.2 Check Neighbors (for fun)
We can use function Check_Neighbors in “NNmatrix.R” for checking the
nearest neighbor index. It is important to point out that NNMatrix sorts
coordinates on the first column before building the neighbor index. Thus we
should use the sorted response and design matrix instead of the raw data in the
data block.

Check_Neighbors(NN.matrix$coords.ord, n.neighbors = M, NN
.matrix, ind = 200)

2.3 Parameter and model block in Stan
We assign Gaussian priors for and , an inverse gamma prior for and a
Gaussian prior for . The following is the parameter and model block
for a random-e!ects NNGP model.

σ τ ϕ
β = { , }β0 β1

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 6 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 parameters{
 vector[P + 1] beta;
 real<lower = 0> sigma;
 real<lower = 0> tau;
 real<lower = 0> phi;
 vector[N] w;
 }

 transformed parameters {
 real sigmasq = sigma^2;
 real tausq = tau^2;
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 phi ~ inv_gamma(ap, bp);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);
 w ~ nngp_w(sigmasq, phi, NN_dist, NN_distM, NN_ind,
N, M);
 Y ~ normal(X * beta + w, tau);
 }

A small modification will make the code work for a response NNGP model:

 parameters{
 vector[P + 1] beta;
 real<lower = 0> sigma;
 real<lower = 0> tau;
 real<lower = 0> phi;
 }

 transformed parameters {
 real sigmasq = sigma^2;
 real tausq = tau^2;
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 phi ~ inv_gamma(ap, bp);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);
 Y ~ nngp(X * beta, sigmasq, tausq, phi, NN_dist, NN
_distM, NN_ind, N, M);
 }

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 7 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Here, the user-defined functions nngp_w and nngp will be given in the
simulation study section.

2.4 User-defined likelihood function for
NNGP models
The hardest part in coding NNGP in Stan is the user-defined likelihood,
specifically, the function nngp_w and nngp in the last subsection. Here we use
nngp to illustrate the main idea of coding NNGP likelihood.

The log-likelihood of in is given by:

In the code below, vector U saves the results of , and
vector V saves all the diagonal elements of Matrix scaled by . With this
notation, the log-likelihood can be simplified as

where all the elements in the likelihood are vectors.

In the calculation of vector , since we know that
matrix has at most nonzero elements and the index of nonzero elements is
given in NN_ind , there is no need for saving the matrix . Instead, we
use a for loop to calculate . Within each iteration, we first use NN_dist and
NN_distM along with the updated parameter to obtain by and

 by , then use NN_ind and to calculate the th
element of . The flops required in each iteration is in the order of .

 functions{
 real nngp_lpdf(vector Y, vector X_beta, real sigmas
q, real tausq,
 real phi, matrix NN_dist, matrix NN_
distM, int[,] NN_ind,
 int N, int M){

 vector[N] V;
 vector[N] YXb = Y - X_beta;
 vector[N] U = YXb;
 real kappa_p_1 = tausq / sigmasq + 1;
 int dim;
 int h;

y(S) (5)

− log − (y(S) − X(S β (I − A (I − A)(y(S) − X(S β)1
2 ∑

i= 1

N
Dii

1
2)⊤)⊤)TD− 1)⊤

(I − A)(y(S) − X(S β))⊤

D σ2

− { log + N log () + (U ⊘ V)}1
2 ∑

i= 1

N
Vi σ2 1

σ2 U⊤ (10)

U = (I − A)(y(S) − X(S β))⊤

A M
n× n I − A

U
A(i, N())si (7)

D(i, i) (6) y(S) − X(S β)⊤ i
U M 3

file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html#mjx-eqn-eq%20D_construct
file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html#mjx-eqn-eq%20A_construct

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 8 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 for (i in 2:N) {
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNdistM;
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNCholL;
 vector[i < (M + 1) ? (i - 1) : M] iNNcorr;
 vector[i < (M + 1) ? (i - 1) : M] v;
 row_vector[i < (M + 1) ? (i - 1) : M] v2;
 dim = (i < (M + 1))? (i - 1) : M;

 if(dim == 1){iNNdistM[1, 1] = kappa_p_1;}
 else{
 h = 0;
 for (j in 1:(dim - 1)){
 for (k in (j + 1):dim){
 h = h + 1;
 iNNdistM[j, k] = exp(- phi * NN
_distM[(i - 1), h]);
 iNNdistM[k, j] = iNNdistM[j, k]
;
 }
 }
 for(j in 1:dim){
 iNNdistM[j, j] = kappa_p_1;
 }
 }

 iNNCholL = cholesky_decompose(iNNdistM);
 for (j in 1: dim){
 iNNcorr[j] = exp(- phi * NN_dist[(i - 1
), j]);
 }

 v = mdivide_left_tri_low(iNNCholL, iNNcorr);

 V[i] = kappa_p_1 - dot_self(v);

 v2 = mdivide_right_tri_low(v', iNNCholL);

 for (j in 1:dim){
 U[i] = U[i] - v2[j] * YXb[NN_ind[(i - 1
), j]];
 }
 }
 V[1] = kappa_p_1;

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 9 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 return - 0.5 * (1 / sigmasq * dot_product(U, (
U ./ V)) +
 sum(log(V)) + N * log(sigmasq))
;
 }
 }

3 Simulation study
Now let’s run the NNGP based models for the simulation data in the last section.
First set parameters of priors:

P = 1 # number of regression coefficient
s
uB = rep(0, P + 1) # mean vector in the Gaussian prio
r of beta
VB = diag(P + 1)*1000 # covariance matrix in the Gaussia
n prior of beta
ss = 3 * sqrt(2) # scale parameter in the normal pr
ior of sigma
st = 3 * sqrt(0.1) # scale parameter in the normal pr
ior of tau
ap = 3; bp = 0.5 # shape and scale parameter in the
inv-gamma prior of phi

3.1 Response NNGP models in Stan
The following chunk is the R code for running response NNGP models. We use the
response and design matrix sorted by the order from NNMatrix instead of the
raw Y and X in the data block.

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 10 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

library(rstan)
options(mc.cores = parallel::detectCores())
data <- list(N = N, M = M, P = P,
 Y = Y[NN.matrix$ord], X = X[NN.matrix$ord,]
, # sorted Y and X
 NN_ind = NN.matrix$NN_ind,
 NN_dist = NN.matrix$NN_dist,
 NN_distM = NN.matrix$NN_distM,
 uB = uB, VB = VB, ss = ss, st = st, ap = ap,
bp = bp)

myinits <-list(list(beta = c(1, 5), sigma = 1, tau = 0.5,
phi = 12),
 list(beta = c(5, 5), sigma = 1.5, tau = 0.
2, phi = 5),
 list(beta = c(0, 0), sigma = 2.5, tau = 0.
1, phi = 9))

parameters <- c("beta", "sigmasq", "tausq", "phi")
samples <- stan(
 file = "nngp_response.stan",
 data = data,
 init = myinits,
 pars = parameters,
 iter = 600,
 chains = 3,
 thin = 1,
 seed = 123
)

The full Stan program for response NNGP model is in the file
“nngp_response.stan”.

writeLines(readLines('nngp_response.stan'))

 /* Response NNGP model */

 functions{
 real nngp_lpdf(vector Y, vector X_beta, real sigmas
q, real tausq,
 real phi, matrix NN_dist, matrix NN_
distM, int[,] NN_ind,
 int N, int M){

 vector[N] V;
 vector[N] YXb = Y - X_beta;

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 11 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 vector[N] U = YXb;
 real kappa_p_1 = tausq / sigmasq + 1;
 int dim;
 int h;

 for (i in 2:N) {
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNdistM;
 matrix[i < (M + 1) ? (i - 1) : M, i < (M +
1) ? (i - 1): M]
 iNNCholL;
 vector[i < (M + 1) ? (i - 1) : M] iNNcorr;
 vector[i < (M + 1) ? (i - 1) : M] v;
 row_vector[i < (M + 1) ? (i - 1) : M] v2;
 dim = (i < (M + 1))? (i - 1) : M;

 if(dim == 1){iNNdistM[1, 1] = kappa_p_1;}
 else{
 h = 0;
 for (j in 1:(dim - 1)){
 for (k in (j + 1):dim){
 h = h + 1;
 iNNdistM[j, k] = exp(- phi * NN
_distM[(i - 1), h]);
 iNNdistM[k, j] = iNNdistM[j, k]
;
 }
 }
 for(j in 1:dim){
 iNNdistM[j, j] = kappa_p_1;
 }
 }

 iNNCholL = cholesky_decompose(iNNdistM);
 iNNcorr = to_vector(exp(- phi * NN_dist[(i
- 1), 1: dim]));

 v = mdivide_left_tri_low(iNNCholL, iNNcorr);

 V[i] = kappa_p_1 - dot_self(v);

 v2 = mdivide_right_tri_low(v', iNNCholL);

 U[i] = U[i] - v2 * YXb[NN_ind[(i - 1), 1:dim
]];
 }

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 12 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 V[1] = kappa_p_1;
 return - 0.5 * (1 / sigmasq * dot_product(U, (
U ./ V)) +
 sum(log(V)) + N * log(sigmasq))
;
 }
 }

 data {
 int<lower=1> N;
 int<lower=1> M;
 int<lower=1> P;
 vector[N] Y;
 matrix[N, P + 1] X;
 int NN_ind[N - 1, M];
 matrix[N - 1, M] NN_dist;
 matrix[N - 1, (M * (M - 1) / 2)] NN_distM;
 vector[P + 1] uB;
 matrix[P + 1, P + 1] VB;
 real ss;
 real st;
 real ap;
 real bp;
 }

 transformed data {
 cholesky_factor_cov[P + 1] L_VB;
 L_VB = cholesky_decompose(VB);
 }

 parameters{
 vector[P + 1] beta;
 real<lower = 0> sigma;
 real<lower = 0> tau;
 real<lower = 0> phi;
 }

 transformed parameters {
 real sigmasq = sigma^2;
 real tausq = tau^2;
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 phi ~ gamma(ap, bp);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 13 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 Y ~ nngp(X * beta, sigmasq, tausq, phi, NN_dist, NN
_distM, NN_ind, N, M);
 }

3.2 Random-e!ects NNGP models for
simulation study
The following chunk is the R code for running Random-e!ects NNGP models:

options(mc.cores = parallel::detectCores())
data <- list(N = N, M = M, P = P,
 Y = Y[NN.matrix$ord], X = X[NN.matrix$ord,]
, # sorted Y and X
 NN_ind = NN.matrix$NN_ind,
 NN_dist = NN.matrix$NN_dist,
 NN_distM = NN.matrix$NN_distM,
 uB = uB, VB = VB, ss = ss, st = st, ap = ap,
bp = bp)

myinits <-list(list(beta = c(1, 5), sigma = 1, tau = 0.5,
phi = 12,
 w_b1 = rep(0, N)),
 list(beta = c(5, 5), sigma = 1.5, tau = 0.
2, phi = 5,
 w_b1 = rep(0.1, N)),
 list(beta = c(0, 0), sigma = 2.5, tau = 0.
1, phi = 9 ,
 w_b1 = rep(0, N)))

parameters <- c("beta", "sigmasq", "tausq", "phi", "w")
samples_w <- stan(
 file = "nngp_random.stan",
 data = data,
 init = myinits,
 pars = parameters,
 iter = 600,
 chains = 3,
 thin = 1,
 seed = 123
)

The full Stan program for random-e!ects NNGP model is in the file
“nngp_random.stan”.

writeLines(readLines('nngp_random.stan'))

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 14 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 /* Random-effects NNGP models*/

 functions{
 real nngp_w_lpdf(vector w, real sigmasq, real phi,
matrix NN_dist,
 matrix NN_distM, int[,] NN_ind, in
t N, int M){

 vector[N] V;
 vector[N] I_Aw = w;
 int dim;
 int h;

 for (i in 2:N) {

 matrix[i < (M + 1)? (i - 1) : M, i < (M +
1)? (i - 1): M]
 iNNdistM;
 matrix[i < (M + 1)? (i - 1) : M, i < (M +
1)? (i - 1): M]
 iNNCholL;
 vector[i < (M + 1)? (i - 1) : M] iNNcorr;
 vector[i < (M + 1)? (i - 1) : M] v;
 row_vector[i < (M + 1)? (i - 1) : M] v2;

 dim = (i < (M + 1))? (i - 1) : M;

 if(dim == 1){iNNdistM[1, 1] = 1;}
 else{
 h = 0;
 for (j in 1:(dim - 1)){
 for (k in (j + 1):dim){
 h = h + 1;
 iNNdistM[j, k] = exp(- phi * NN
_distM[(i - 1), h]);
 iNNdistM[k, j] = iNNdistM[j, k]
;
 }
 }
 for(j in 1:dim){
 iNNdistM[j, j] = 1;
 }
 }

 iNNCholL = cholesky_decompose(iNNdistM);
 iNNcorr = to_vector(exp(- phi * NN_dist[(i

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 15 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

- 1), 1: dim]));

 v = mdivide_left_tri_low(iNNCholL, iNNcorr)
;

 V[i] = 1 - dot_self(v);

 v2 = mdivide_right_tri_low(v', iNNCholL);

 I_Aw[i] = I_Aw[i] - v2 * w[NN_ind[(i - 1),
1:dim]];

 }
 V[1] = 1;
 return - 0.5 * (1 / sigmasq * dot_product(I_Aw
, (I_Aw ./ V)) +
 sum(log(V)) + N * log(sigmasq))
;
 }
 }

 data {
 int<lower=1> N;
 int<lower=1> M;
 int<lower=1> P;
 vector[N] Y;
 matrix[N, P + 1] X;
 int NN_ind[N - 1, M];
 matrix[N - 1, M] NN_dist;
 matrix[N - 1, (M * (M - 1) / 2)] NN_distM;
 vector[P + 1] uB;
 matrix[P + 1, P + 1] VB;
 real ss;
 real st;
 real ap;
 real bp;
 }

 transformed data {
 cholesky_factor_cov[P + 1] L_VB;
 L_VB = cholesky_decompose(VB);
 }

 parameters{
 vector[P + 1] beta;
 real<lower = 0> sigma;

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 16 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

 real<lower = 0> tau;
 real<lower = 0> phi;
 vector[N] w;
 }

 transformed parameters {
 real sigmasq = square(sigma);
 real tausq = square(tau);
 }

 model{
 beta ~ multi_normal_cholesky(uB, L_VB);
 phi ~ gamma(ap, bp);
 sigma ~ normal(0, ss);
 tau ~ normal(0, st);
 w ~ nngp_w(sigmasq, phi, NN_dist, NN_distM, NN_ind,
N, M);
 Y ~ normal(X * beta + w, tau);
 }

4 Results and Discussion
In this section, we will show the results of the simulation study, compare
response and random-e!ects NNGP models, and provide suggestions on how to
use NNGP based models.

4.1 Response NNGP model for simulation
study
Response NNGP model is faster and easier to sample from posterior distribution
than the random-e!ects NNGP models. The following shows the summary table
and trace plot of the posterior samples from response NNGP model.

print(samples)

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 17 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Inference for Stan model: nngp_response.
3 chains, each with iter=600; warmup=300; thin=1;
post-warmup draws per chain=300, total post-warmup draws=
900.

 mean se_mean sd 2.5% 25% 50% 75%
97.5% n_eff
beta[1] 0.81 0.03 0.54 -0.26 0.49 0.81 1.10
1.95 412
beta[2] 5.01 0.00 0.03 4.95 4.99 5.00 5.02
5.06 573
sigmasq 2.47 0.05 0.92 1.48 1.92 2.26 2.76
4.60 311
tausq 0.09 0.00 0.03 0.04 0.07 0.09 0.11
0.15 360
phi 4.55 0.07 1.36 2.13 3.57 4.50 5.44
7.41 342
lp__ -99.37 0.11 1.85 -104.42 -100.26 -98.98 -98.02
-96.98 262
 Rhat
beta[1] 1.00
beta[2] 1.00
sigmasq 1.01
tausq 1.00
phi 1.00
lp__ 1.01

Samples were drawn using NUTS(diag_e) at Wed Nov 29 16:27
:38 2017.
For each parameter, n_eff is a crude measure of effective
sample size,
and Rhat is the potential scale reduction factor on split
chains (at
convergence, Rhat=1).

stan_trace(samples)

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 18 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

We also run the model with marginal GP likelihood as a benchmark for
comparison. For the sake of simplicity, we suppress the full code and give the
summary table below. The Stan code “GP_marginal.stan” and R code “nngp.R”
are posted on the Github. The posterior estimates of the parameters from two
models are similar, while the running time required for response NNGP model is
much less than the basic GP. The e!iciency of NNGP will be more obvious when
the dataset gets larger.

print(samples_GP)

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 19 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Inference for Stan model: GP_marginal.
3 chains, each with iter=600; warmup=300; thin=1;
post-warmup draws per chain=300, total post-warmup draws=
900.

 mean se_mean sd 2.5% 25% 50% 75%
97.5% n_eff Rhat
beta[1] 0.58 0.05 0.79 -1.09 0.21 0.60 1.03
2.03 241 1.00
beta[2] 5.00 0.00 0.03 4.95 4.98 5.00 5.02
5.05 647 1.00
sigmasq 2.87 0.10 1.57 1.49 1.99 2.44 3.14
6.68 237 1.02
tausq 0.10 0.00 0.03 0.04 0.08 0.10 0.12
0.17 376 1.00
phi 4.01 0.08 1.45 1.36 2.98 4.00 4.94
6.95 329 1.00
lp__ -93.04 0.13 1.86 -97.67 -94.04 -92.55 -91.68 -
90.64 221 1.01

Samples were drawn using NUTS(diag_e) at Wed Nov 29 16:52
:13 2017.
For each parameter, n_eff is a crude measure of effective
sample size,
and Rhat is the potential scale reduction factor on split
chains (at
convergence, Rhat=1).

print(get_elapsed_time(samples))

 warmup sample
chain:1 63.2072 41.5015
chain:2 59.8474 52.7120
chain:3 60.7572 50.6420

print(get_elapsed_time(samples_GP))

 warmup sample
chain:1 543.883 426.190
chain:2 609.342 457.253
chain:3 552.614 461.725

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 20 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

4.2 Random-e!ects NNGP models for
simulation study
The following gives the summary table posterior samples and trace plots of the
MCMC Chains from random-e!ects NNGP model:

print(samples_w, pars = c("beta", "sigmasq", "tausq", "ph
i", "w[1]", "w[2]",
 "w[3]", "w[4]"))

Inference for Stan model: nngp_random.
3 chains, each with iter=600; warmup=300; thin=1;
post-warmup draws per chain=300, total post-warmup draws=
900.

 mean se_mean sd 2.5% 25% 50% 75% 97.5%
n_eff Rhat
beta[1] 0.95 0.17 0.26 0.42 0.75 0.90 1.18 1.41
2 2.64
beta[2] 5.00 0.00 0.03 4.95 4.98 5.00 5.02 5.06
257 1.00
sigmasq 2.44 0.09 1.02 1.49 1.88 2.18 2.61 5.50
131 1.01
tausq 0.10 0.00 0.03 0.06 0.08 0.10 0.12 0.16
51 1.05
phi 4.63 0.12 1.38 1.85 3.74 4.60 5.53 7.35
125 1.03
w[1] -0.28 0.20 0.41 -1.08 -0.58 -0.29 0.04 0.47
4 1.29
w[2] 0.73 0.20 0.41 -0.07 0.44 0.72 1.02 1.53
4 1.29
w[3] -3.01 0.18 0.41 -3.78 -3.29 -3.00 -2.72 -2.25
5 1.29
w[4] -0.72 0.17 0.40 -1.50 -0.99 -0.73 -0.46 0.05
5 1.26

Samples were drawn using NUTS(diag_e) at Wed Nov 29 16:32
:54 2017.
For each parameter, n_eff is a crude measure of effective
sample size,
and Rhat is the potential scale reduction factor on split
chains (at
convergence, Rhat=1).

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 21 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

stan_trace(samples_w, pars = c("beta", "sigmasq", "tausq"
, "phi", "w[1]",
 "w[2]","w[3]", "w[4]"))

It is not surprising to see a slower convergence rate and worse mixing of the
MCMC Chains. Response NNGP model marginalizes out the spatial e!ects ,
yields a lower-dimensional parameter space, hence drastically improves the
posterior geometry. While the parameters to be estimated in a random-e!ects
NNGP model are highly correlated, and the number of parameters is on
the scale of the number of observations. Thus the convergence rate of MCMC
chains from a random-e!ects NNGP is slow because of the high correlation and
dimension of the parameter space.

Notice the trace plot of random-e!ects are highly correlated with the intercept,
we modified the code and make the random-e!ects centered at the
intercept. The code of modified random-e!ects NNGP model can be found in
“nngp.R” and “nngp_random_b1.stan”. Here we suppress the details of the code
and show the results directly:

print(samples_wb1, pars = c("beta", "sigmasq", "tausq", "
phi", "w_b1[1]",
 "w_b1[2]", "w_b1[3]", "w_b1[4
]"))

w

{θ, w}

w
w(s)

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 22 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Inference for Stan model: nngp_random_b1.
3 chains, each with iter=600; warmup=300; thin=1;
post-warmup draws per chain=300, total post-warmup draws=
900.

 mean se_mean sd 2.5% 25% 50% 75% 97.5%
n_eff Rhat
beta[1] 0.79 0.02 0.61 -0.38 0.44 0.76 1.13 2.09
900 1.00
beta[2] 5.00 0.00 0.03 4.95 4.98 5.00 5.02 5.06
273 1.01
sigmasq 2.57 0.05 0.95 1.48 1.92 2.32 2.92 5.07
404 1.00
tausq 0.11 0.00 0.03 0.05 0.09 0.11 0.13 0.16
41 1.09
phi 4.29 0.09 1.37 1.84 3.30 4.22 5.26 7.09
253 1.01
w_b1[1] 0.64 0.01 0.32 0.00 0.44 0.65 0.86 1.23
900 1.01
w_b1[2] 1.67 0.01 0.33 0.97 1.46 1.68 1.90 2.28
900 1.00
w_b1[3] -2.07 0.01 0.29 -2.65 -2.26 -2.07 -1.88 -1.51
900 1.00
w_b1[4] 0.23 0.01 0.30 -0.35 0.03 0.23 0.42 0.82
900 1.00

Samples were drawn using NUTS(diag_e) at Wed Nov 29 16:56
:21 2017.
For each parameter, n_eff is a crude measure of effective
sample size,
and Rhat is the potential scale reduction factor on split
chains (at
convergence, Rhat=1).

stan_trace(samples_wb1, pars = c("beta", "sigmasq", "taus
q", "phi", "w_b1[1]",
 "w_b1[2]", "w_b1[3]", "w
_b1[4]"))

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 23 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

4.3 Discussion
We recommend a response NNGP model for a large scale data analysis when the
study focuses on the inference of parameter set . On the other hand, random-
e!ects NNGP models are preferred when the study needs the recovery of latent
process . However, the convergence rate of the MCMC Chains from random-
e!ects model could be prohibitively slow when the dataset is large, so we only
recommend coding random-e!ects NNGP model in Stan when the dataset is
small. For recovering latent process when the dataset is large, Package spNNGP
provides an algorithm for random-e!ects NNGP model, which implements a
sequential Gibbs sampler for updating the latent process. Conjugate NNGP
models are also good options for recovering latent process . More details of
NNGP based models can be found in Finley et al. (2017)

References
Datta, Abhirup, Sudipto Banerjee, Andrew O Finley, and Alan E Gelfand. 2016.
“Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical
Datasets” 111. Taylor & Francis: 800–812.

Finley, Andrew O, Abhirup Datta, Bruce C Cook, Douglas C Morton, Hans E
Andersen, and Sudipto Banerjee. 2017. “Applying Nearest Neighbor Gaussian
Processes to Massive Spatial Data Sets Forest Canopy Height Prediction Across
Tanana Valley Alaska.”

STAN DEVELOPMENT TEAM. 2017. “Stan Modeling Language User’s Guide and
Reference Manual.”

θ

w(s)

w(s)

11/29/17, 4)59 PMNearest Neighbor Gaussian Processes (NNGP) based models in Stan

Page 24 of 24file:///Users/luzhang/Documents/github/NNGP_STAN/nngp.html

Vecchia, A. V. 1988. “Estimation and Model Identification for Continuous Spatial
Processes.”

