
Simulation-Based Calibration with Stan and RStan
Bob Carpenter

May 2019

Why simulation-based calibration?

Simulation-based calibration (SBC) is a generally applicable method
to asses the soundness of an implementation of a Bayesian model and
posterior sampler.1 Well-specified Bayesian models are calibrated by 1 The method was originally developed

in Cook, S. R., Gelman, A., & Rubin,
D. B. (2006). Validation of software
for Bayesian models using posterior
quantiles. Journal of Computational
and Graphical Statistics, 15(3), 675-
692. The refinement implemented
here is from Talts, S., Betancourt, M.,
Simpson, D., Vehtari, A., & Gelman, A.
(2018). Validating Bayesian inference
algorithms with simulation-based
calibration. arXiv 1804.06788.

construction. That is, the posterior intervals will have proper frequen-
tist coverage if the model is correct.2 Simulation-based calibration uses

2 Models are typically not correct,
which is why we always need to apply
posterior predictive checks to assess
the fit of real data; simulation-based
calibration only assesses the algorithm
and model implementation, not its fit to
real data.

this property of Bayesian models to define a testing procedure for
Bayesian posterior samplers.

Bayesian posteriors

Simulation-based calibration relies on the standard application of
Bayes’s rule and the standard factoring of the joint density. Given a
fixed data set y, Bayes’s rule tells us that

p(θ | y) =
p(y | θ) · p(θ)

p(y)
∝ p(y | θ) · p(θ)

That is, the posterior p(θ | y) is proportional to the prior p(θ) times
the likelihood p(y | θ).

Simulation-based inference

A sampler provides a sequence of draws distributed according to the
posterior distribution,

θ(1), . . . , θ(M) ∼ p(θ | y).

Samples are useful in that they allow us to calculate integrals corre-
sponding to conditional expectations,

E[f (θ) | y] =
∫

f (θ) · p(θ | y)dθ.

These allow us to compute posterior means as conditional expecta-
tions of parameters,

µ̂ = E [µ | y] ,

event probabilities as conditional expectations of indicator functions,

P[θ1 > θ2 | y] = E [I[θ1 > θ2] | y] ,

simulation-based calibration with stan and rstan 2

and posterior predictive distributions of new observations as condi-
tional expectations of sampling densities,

p(ỹ | y) = E [p(ỹ | θ) | y] .

The conditioning in all cases is on observed data y and the expec-
tations are thus taken with respect to the posterior distribution of θ

conditioned on y.

Simulation-based Calibration

Simulation-based calibration proceeds by following the generative
story of the model and the standard procedure of posterior inference.

Step 1: Simulate from the generative model

The first step is to simulate the value of the parameters according to
the prior,

θsim ∼ p(θ).

Next, it simulates data from the sampling distribution based on the
simulated parameter values,3 3 The distribution p(y | θ) is called

the likelihood when considered as
a function of the parameters θ for
fixed data y, and called the sampling
distribution when considered as a
function of the variable y for fixed
parameters θ.

ysim ∼ p(y | θsim).

By construction,
(
ysim, θsim) constitutes a draw from the model’s joint

density p(y, θ). By Bayes’s rule, we can invert this to show that

p
(

θsim | ysim
)

∝ p
(

ysim, θsim
)

.

This is the key insight behind simulation-based calibration—that θsim

is just an ordinary draw from the posterior, p
(
θ | ysim) .

Step 2: Sample from the posterior

Next, we use the software being tested to take a sequence of M draws
from the posterior given the simulated data,

θ(1), . . . , θ(M) ∼ p
(

θ | ysim
)

.

Step 3: Test calibration

From the posterior p
(
θ | ysim) we have a single draw θsim and a series

of draws θ(1), . . . , θ(M) we would like to test. Because θsim is a ran-
dom draw from the posterior just like all of the θ(m), we know that it
should have a uniform distribution in rank when considered among
the θ(1), . . . , θ(M).

simulation-based calibration with stan and rstan 3

This is the hypothesis we are going to test. We will simulate multi-
ple data sets

(
ysim(n), θsim(n)

)
for nin1 : N and for each take M draws

from the posterior,
θ(n,m) ∼ p

(
θ | ysim(n)

)
.

For each such simulated data set, we will compute the rank of
θsim(n) in θ(1,m), . . . , θ(N,m),4 4 For example, rank(4, (5, 1, 6, 7)) = 2

because there is one numer in the
sequence (5, 1, 6, 7) that is less than
4. This operation can also be done by
adding the value 4 to the sequence and
recovering its usual rank.

rn = rank
(

θsim(n),
(

θ(n,1), . . . , θ(n,M)
))

= 1 + ∑M
m=1 I

[
θ(n,m) < θsim(n)

]
We then test that the sequence of ranks, r = r1, . . . , rN has a

discrete_uniform(1, M + 1) distribution. We can do this in any num-
ber of ways, but for simplicity, we’re going to test it using a simple χ2

test on binned values.

Application: Continuous integration testing

Our intended application for these tests is continuous integration
testing for Stan.5 We thus need to automate testing for uniformity.6 5 Continuous integration (CI) tests that

nothing breaks when the software is
changed.
6 We can’t just follow the advice of
Talts et al. and eyeball thousands of
histograms every time someone merges
a change to Stan!

If θ is multivariate, the entire SBC procedure should be carried
out for each component of θ = (θ1, . . . , θk) . To control false positive
rates in an automated test framework, we need to adjust the warning
thresholds for multiple comparisons.7

7 A more sophisticated approach would
be to use a multivariate test for unifor-
mity in order to intrinsically adjust for
the multiple comparisons.

Coding Simulation-Based Calibration in Stan

For a given model, we can code up the entire simulation-based cali-
bration procedure in a single Stan program. This includes simulating
parameters and data in the transformed data block, defining the pos-
terior to be sampled in the parameters and model blocks, and then
defining the indicator function I[θ(m) < θsim as a generated quan-
tity. Sampling from the posterior of this model in Stan allows us to
compute ranks by summing the indicator over the M draws.

The model

We will be testing a very simple model that estimates a normal loca-
tion parameter µ ∈ (−∞, ∞) and scale parameter σ ∈ (0, ∞).8 We will 8 Thus we have θ = (µ, σ) in the

notation of the previous section.use the independent priors

µ ∼ normal(0, 1)

and
σ ∼ lognormal(0, 1).

simulation-based calibration with stan and rstan 4

The prior density is thus

p(µ, σ) = normal(µ | 0, 1) · lognormal(σ | 0, 1).

We assume that the data consists of a vector y = y1, . . . , y10, each
element of which is generated independently according to

yn ∼ normal(µ, σ).

Thus our likelihood is

p(y | µ, σ) =
10

∏
n=1

normal(yn | µ, σ).

Stan program

Here’s the complete Stan program implementing the model defined
in the previous section.

transformed data {

real mu_sim = normal_rng(0, 1);

real<lower = 0> sigma_sim = lognormal_rng(0, 1);

int<lower = 0> N = 10;

vector[N] y_sim;

for (n in 1:N)

y_sim[n] = normal_rng(mu_sim, sigma_sim);

}

parameters {

real mu;

real<lower = 0> sigma;

}

model {

mu ~ normal(0, 1);

sigma ~ lognormal(0, 1);

y_sim ~ normal(mu, sigma);

}

generated quantities {

int<lower = 0, upper = 1> I_lt_sim[2]

= { mu < mu_sim, sigma < sigma_sim };

}

Let’s walk through the program line by line. First, there is no data

block, so no external data needs to be provided to the program to
run. It defines constant size variables (N) by assignment and uses ran-
dom number generators to define the simulated parameters (mu_sim,
sigma_sim), and the simulated data (y_sim).

simulation-based calibration with stan and rstan 5

The first statement draws a random value for mu_sim from a stan-
dard normal distribution using Stan’s random number generation
capabilities. The second statement draws a positive random variable
from a standard lognormal distribution. This provides our values for
our simulated parameters,

θsim =
(

µsim, σsim
)

.

Next, we declare a non-negative integer variable N and define it to
have the value 10. That will determine the size of the simulated data
vector

ysim =
(

ysim
1 , . . . , ysim

N

)
.

Finally, we have a loop to generate the ysim
n values independently

according to a normal distribution with location µsim and scale σsim.
Next up, we declare the two scalar parameters, mu and sigma, for

the model we are going to fit in the parameters block. The variable
sigma must be defined with the lower bound of zero, as it is required
to be positive.9 9 If it were not constrained, Stan would

try to explore negative values for
it. When values are constrained to
be positive, Stan will transform the
geometry of the space it explores in
order to restrict its attention to positive
values.

The first two sampling statements in the model block define the
prior, p(µ, σ) = p(µ) · p(σ). The last statement defines the likelihood,
p(ysim | µ, σ). This means that Stan’s going to draw posterior samples
according to(

µ(1), σ(1)
)

, . . .
(

µ(M), σ(M)
)
∼ p

(
µ, σ | ysim

)
,

which is what we need for simulation-based calibration. The sample
is based on the posterior for the simulated data ysim.

Finally, the generated quantities block declares and defines
an integer array I_lt_sim of boolean values. The name follows the
definition of applying the indicator function to the test that the simu-
lated data was less than a simulated parameter value. The test in our
example program returns an array with two values, the first entry
of which is an indicator of whether µ < µsim and the second and
indicator of whether σ < σsim.10 10 We conventionally order these in the

same order as the parameters were
declared to make it easy to read them
out in order downstream.

In general, if we have a posterior draw θ(m), the value for k-th
entry of I_lt_sim(m) will be

I_lt_sim(m)
k = I

[
θ
(m)
k < θsim

k

]
.

In our example program, let’s suppose our simulated parameters
turn out to be

(µsim, σsim) = (1.01, 0.23).

simulation-based calibration with stan and rstan 6

Suppose we then take M = 4 simulations to produce draws

m µ(m) σ(m)

1 1.07 0.33
2 −0.32 0.14
3 −0.99 0.26
4 1.51 0.31

Then the value of I_lt_sim will be an array with four rows and two
columns,

m µ(m) < µsim σ(m) < σsim

1 0 0
2 1 1
3 1 0
4 0 0

In two of the three posterior draws, µ(m) < µsim; in one of the poste-
rior draws, σ(m) < σsim. The rank of µsim and σsim are thus the sums
of the columns plus one (to ensure ranks run from 1 to M + 1).

The number of possible ranks for the simulated parameter among
the posterior draws is one larger than the number of posterior draws.
For example, if we have five posterior draws µ(1), . . . , µ(5) for the
location parameter, the rank of the simulated parameter µsim can be
as low as 0 if it’s smaller than all of the µ(m) and as high as 5 if it’s
larger than all of the µ(m).11 We add one to the raw counts (which 11 This is called the “fencepost” problem

in introductory computer science
classes, where the analogy is that if
there are n fence posts, there are n− 1
connecting bits of fence. Failure to
adjust for this discrepancy in counts
between posts and fence units is the
cause of numerous off-by-one errors in
computer programs.

range from zero the number of draws) to get ranks numbering from
one to the number of draws plus one.

Hypothesis Testing Uniformity of Ranks

We’re going to apply a simple χ2 test to the ranks by binning them.
We will divide the ranks into 20 bins.12 12 This assumes the number of ranks is

divisible by 20 to ensure uniformity;
converting to floating point does not
solve this problem, as we only have a
discrete number of possible ranks as
output.

Because the number of ranks is one greater than the number of
simulations, we will use 999 simulations to get an evenly divisible
1000 possible ranks. Also, to make our life easier in R, we will num-
ber the ranks 1:1000 rather than 0:999.

The counts in each bin will follow a uniform distribution under
the null hypothesis of calibration. Therefore the squared difference
from the expected count of each bin will follow a χ2 distribution
and we can employ the standard hypothesis test for uniformity. This
involves the test statistic

X2 =
I

∑
i=1

(bi − ei)
2

ei

simulation-based calibration with stan and rstan 7

where bi is the number of ranks falling in bin i ∈ 1 : I and

ei =
M
I

is the number of ranks expected to fall in that bin under the null hy-
pothesis of uniformity.13 Under the null hypothesis of uniformity, 13 If the bins are not uniformly sized,

the expectations ei may be changed to
accomodate.

the test statistic X2 follows a χ2 distribution with I degrees of free-
dom.14 The reported p-value will be that of the probability of having 14 The test statistic is just a function of

the random variables bi and is hence a
random variable itself with all the usual
properties like having a distribution.

a value as extreme as that observed in the bi given the assumption of
uniformity. If this is very small, we can confidently reject the assump-
tion of uniformity and conclude there is something wrong with our
sampler.15 15 We do not need to make such stark

binary choices. We are just using these
hypothesis tests as flags to alert us to
possible problems introduced by code
changes or to cause us to check our
model’s fit more closely if we are just
applying this procedure to a single
model of interest.

Testing uniformity in R

To implement our uniformity test in R, we use

@param y: sequence of ranks in 1:max_rank

@param max_rank: maximum rank of data in y

@param bins (default 20): bins to use for chi-square test

@error return NA if max rank not divisible by number of bins

@return p-value for chi-square test that data is evenly

distributed among the bins

test_uniform_ranks <- function(y, max_rank, bins = 20) {

if (max_rank / bins != floor(max_rank / bins)) {

printf("ERROR in test_uniform_ranks")

printf(" max rank must be divisible by bins.")

printf(" found max rank = %d; bins = %d", max_rank, bins)

return(NA)

}

bin_size <- max_rank / bins

bin_count <- rep(0, bins)

N <- length(y)

for (n in 1:N) {

bin <- ceiling(y[n] / bin_size)

bin_count[bin] <- bin_count[bin] + 1

}

chisq.test(bin_count)$p.value

}

As input, this function takes the sequence y of ranks to evaluate
for uniformity, the maximum possible rank, and the number of bins
to use (defaulting to 20). After checking consistency, it just iterates
through the elements of y incrementing the appropriate bin. This
can be done with a simple rounded integer division as shown. If
the number of ranks is divisible by the number of bins, we expect

simulation-based calibration with stan and rstan 8

each bin to have the same number of elements. Finally, the built-in
chisq.test of R is used and its p-value returned.16 16 We could refine this function to deal

with uneven bin sizes by adding a
parameter to the chisq.test call that
indicates the expected probability of
inclusion in each bin.

Coding Simulation-Based Calibration in RStan

Given the Stan program to do the heavy lifting of fitting, we can
write a simple R driver program to calculate all we need for simulation-
based calibration (assuming a Stan program defining the appropriate
test variables). Let’s first include the Stan library and print.

First, we have a simple program to determine the number of pa-
rameters being monitored for simulation-based calibration in the Stan
program. This and the SBC program itself will depend on the rstan

library.

@param model: precompiled Stan model

@param data: data for model (defaults to empty list)

@return size of the generated quantity array I_lt_sim

num_monitored_params <- function(model, data = list()) {

fit <- sampling(model, data = data,

iter = 1, chains = 1, warmup = 0,

refresh = 0, seed = 1234)

fit@par_dims$I_lt_sim

}

The SBC program itself takes a slew of arguments and returns a
structured result.

@param model: precompiled Stan model

@param data: list of data for model (defaults to empty)

@param sbc_sims: number of total simulation runs for SBC

@param stan_sims: number of posterior draws per Stan simulation

@param init_thin: initial thinning (doubles thereafter up to max)

@param max_thin: max thinning level

@param seed: PRNG seed to use for Stan program to generate data

@param target_n_eff: target effective sample size (should be 80%

or 90% of stan_sims to stand a chance)

@return list with keys (rank, p_value, thin) for 2D array of ranks

and 1D array of p-values, and 1D array of thinning rates

sbc <- function(model, data = list(),

sbc_sims = 1000, stan_sims = 999,

init_thin = 4, max_thin = 64,

target_n_eff = 0.8 * stan_sims) {

num_params <- num_monitored_params(model, data)

ranks <- matrix(nrow = sbc_sims, ncol = num_params)

thins <- rep(NA, sbc_sims)

simulation-based calibration with stan and rstan 9

for (n in 1:sbc_sims) {

n_eff <- 0

thin <- init_thin

while (TRUE) {

fit <- sampling(model,

data = data,

chains = 1,

iter = 2 * thin * stan_sims,

thin = thin,

control = list(adapt_delta = 0.99),

refresh = 0)

fit_summary <- summary(fit, pars = c("lp__"), probs = c())$summary

n_eff <- fit_summary["lp__", "n_eff"]

if (n_eff >= target_n_eff || (2 * thin) > max_thin) break;

thin <- 2 * thin

}

thins[n] <- thin

printf("n = %5d; thin = %4d; n_eff = %5.0f", n, thin, n_eff)

lt_sim <- extract(fit)$I_lt_sim

for (i in 1:num_params)

ranks[n, i] <- sum(lt_sim[, i]) + 1

}

pval <- rep(NA, num_params)

for (i in 1:num_params)

pval[i] <- test_uniform_ranks(ranks[, i],

max_rank = stan_sims + 1)

list(rank = ranks, p_value = pval, thin = thins)

}

The arguments to the sbc() function include a precompiled Stan
model17, any data required by that model (defaulting to an empty list 17 As produced from a Stan program by

rstan::stan_model(model_file).for models that require no external data), a number of total simula-
tions for SBC and a total number of posterior draws per simulation
for Stan. Additional arguments control the initial thinning rate, the
maximum thinning rate, and the target effective sample size. The
thinning rate will start at the initial value and be increased until we
get at least the target effective sample size or exceed the maximum
thinning rate.

Before doing anything else, the program calls num_monitored_params

to find out the size of the the indicator array so it can preallocate the
matrix of ranks produced by sampling.

The sbc() function then iterates over the number of SBC simula-
tions, and for each one simulates a data set then fits it with Stan.18 18 The simulation code for the parame-

ters is also in the Stan program.We need to thin and make sure the resulting effective sample size is

simulation-based calibration with stan and rstan 10

large enough to remove correlation from the posterior draws or they
will fail the uniformity test.19 19 This doesn’t mean we should do

inference on thinned sets of draws;
the unthinned draws produce more
accurate expectation calculations.

In order to hit our target effective sample size, we’ll introduce a
technique known as iterative deepening in the algorithms literature.
The algorithm starts runs with an initial amount of thinning, then
tests if the effective sample size is large enough. If it’s not, the pro-
gram continues retrying with more iterations and more thinning until
it hits the target effective size or exceeds the maximum thinning rate
allowed.20 20 If there was no maximum, there

would be a risk of infinite loops in
models that do not mix well in the
sampler.

To monitor mixing, we will be using the estimated effective sample
size for lp__, the log density (up to an additive normalizing con-
stant). This is a non-linear function of all of the parameters and if it
mixes well, the parameters typically mix well.21 A stricter test would 21 As the transform of a group of

random variables, the log density is
also a random variable in the posterior.
We could use it to compute the entropy
of a distribution, for example, which is
the expectation of a log density.

be to require every parameter’s estimated effective sample size to ex-
ceed some threshold; multiple parameters will make such a test even
stricter.

The call to the sampler uses the seed specified in the argument,
with a chain id corresponding to the SBC iteration. This will make
sure each SBC iteration uses its own segment of a long sequence of
pseudorandom number draws.22 22 Controlling the pseudo-random

number generators in simulation
programs is critical. Often built-in seeds
are time-based, which in computation-
intensive situations can result in the
same seed being reused, which defeats
the assumption of independent testing.

To extract the effective sample size for lp__, we need to dive into
the returned Stan fit object.23 We extract the number of effective

23 RStan is distributed with a vignette
on the Stan fit object. R uses the term
“vignette” for documentation of how to
use a package.

samples for the variable lp__, which represents the log density of
the model at the sample being drawn (up to an additive normalizing
constant).

If the effective size is large enough, or if the maximum thinning
rate will be exceeded in the next iteration, the algorithm breaks out
of the loop.24 Otherwise, the algorithm doubles the thinning rate and 24 The break statement causes execution

of a loop to terminate and execution to
begin after the loop; it’s useful when
there are complicated termination
conditions that are awkward to write in
the loop’s condition.

tries again. The additional factor of two in the number of iterations
is because half of the iterations go to warmup by default. As it goes
along, the program records the thinning rate in each iteration.

When it has found a large enough estimated effective sample size
for the SBC iteration (or fails by exceeding max thinning), it then
extracts the value of the generated quantity I_lt_sim. The value
of I_lt_sim[m, k] is a binary indicator for posterior draw m and
parameter k as to whether the posterior draw’s value is less than the
simulated value for the parameter.

Then, for each parameter k, we sum the indicators I_lt_sim[

, k] to calculate the rank of the each simulated parameter among
the posterior draws for that parameter. Because we add one, the
value will be between one and one plus the maximum number of
Stan draws. With a default of 999 draws, the ranks should range
uniformly from 1 to 1000.

With these ranks in hand, the test_uniform_ranks program calcu-

https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html
https://cran.r-project.org/web/packages/rstan/vignettes/stanfit-objects.html

simulation-based calibration with stan and rstan 11

lates the p-value for each parameter. The null hypothesis is that the
ranks of the simulated parameter value among the posterior draws
will be uniform across multiple simulated parameters and data sets.

The program returns the raw ranks for each parameter for each
SBC iteration, along with the p-values for each parameter, and the
thinning level used for each iteration.

When things go right

To run, we first have to compile the Stan program.

model <- stan_model("normal-sbc.stan")

Then we can call the simulation-based calibration function.

result <- sbc(model, data = list(), sbc_sims = 1000, stan_sims = 999,

max_thin = 64)

With 999 Stan simulations, there are 1000 possible ranks, so the
bins will divide nice and evenly. We can see the thinning levels actu-
ally used by summarizing them as a table.

table(result$thin)

4 8 16 32

563 424 12 1

Finally, we print out the p-values for our uniformity test.

result$p_value

[1] 0.77 0.75

Everything looks good.25 25 We’d be worried if those p-values
were very small.We can also plot histograms of the ranks.

A <- dim(result$rank)[1]

rank_df <-

rbind(data.frame(parameter = rep("mu", A),

y = result$rank[, 1]),

data.frame(parameter = rep("sigma", A),

y = result$rank[, 2]))

rank_plot <-

ggplot(rank_df, aes(x = y)) +

geom_histogram(binwidth = 50, color = "black",

fill = "#ffffe8", boundary = 0) +

facet_wrap(vars(parameter)) +

simulation-based calibration with stan and rstan 12

ggtheme_tufte() +

theme(panel.spacing.x = unit(2, "lines"))

rank_plot

Figure 1: Histogram of ranks of the
simulated parameter value with respect
to the posterior draws for the two
model parameters. If all is working as it
should be, these should look uniform,
which they do here.

When things go wrong

Now let’s see what happens when our model is misspecified for
our data generating process. To set this up, we’ll use the same nor-
mal model, but rather than generating normal data, we’ll generate
Student-t-distributed data with four degrees of freedom. We’ll sim-
ulate µsim and σsim as before (standard normal and standard lognor-
mal) and generate the simulated ysim based on these as

ysim
n ∼ student_t(4, µ, σ).

Here’s the full Stan code.

print_file(’bad-t-normal-sbc.stan’)

transformed data {

real mu_sim = normal_rng(0, 1);

real<lower = 0> sigma_sim = lognormal_rng(0, 1);

int<lower = 0> N = 10;

vector[N] y_sim;

for (n in 1:N)

y_sim[n] = student_t_rng(4, mu_sim, sigma_sim);

}

parameters {

real mu;

real<lower = 0> sigma;

}

simulation-based calibration with stan and rstan 13

model {

mu ~ normal(0, 1);

sigma ~ lognormal(0, 1);

y_sim ~ normal(mu, sigma);

}

generated quantities {

int<lower = 0, upper = 1> I_lt_sim[2]

= { mu < mu_sim, sigma < sigma_sim };

}

Only a single line has changed in the code, with

y_sim[n] = normal_rng(mu_sim, sigma_sim);

being replaced by

y_sim[n] = student_t_rng(4, mu_sim, sigma_sim);

Now let’s see what happens. We need to compile the model, run
SBC, and print the p-values.

bad_model <- stan_model(’bad-t-normal-sbc.stan’)

bad_result <- sbc(bad_model, data = list(),

sbc_sims = 1000, stan_sims = 999,

max_thin = 64)

bad_result$p_value

[1] 0.536 0.000

The resulting p-values show a clear failure of calibration, as we
would expect. Here are the histograms of ranks, which visually in-
dicate how the location parameter is well calibrated but not the scale
parameter.

bad_A <- dim(bad_result$rank)[1]

bad_rank_df <-

rbind(data.frame(parameter = rep("mu", bad_A),

y = bad_result$rank[, 1]),

data.frame(parameter = rep("sigma", bad_A),

y = bad_result$rank[, 2]))

bad_rank_plot <-

ggplot(bad_rank_df, aes(x = y)) +

geom_histogram(binwidth = 50, color = "black",

fill = "#ffffe8", boundary = 0) +

facet_wrap(vars(parameter)) +

simulation-based calibration with stan and rstan 14

ggtheme_tufte() +

theme(panel.spacing.x = unit(2, "lines"))

bad_rank_plot

Figure 2: For a misspecified model
where the simulation procedure does
not match the model, the histograms
will be far uniform. Here, the data
generating process is Student-t with
four degrees of freedom whereas the
model assumes normality.

We see the problem immediately in that we are way off in estimat-
ing σ in the posterior; which shows up directly in the small p-value.

Conclusion

When we generate data from the true generating process of a model,
we expect our sampling program to be able to sample from the pos-
terior given the data. Simulation-based calibration lets us test if
our samplers are properly sampling from the posterior of a given
model by testing simulated coverage. This note shows how to code
simulation-based calibration for a Stan model using an elaborated
Stan model and how to drive such tests using RStan.

Acknowledgements

Thanks to Lauren Kennedy for helping me with R data structures26. 26 If you don’t know str(), you should.
It’s like magic. I can finally use a Stan
fit object without the vignette.

And thanks to Jonah Gabry for the trick on using an integer array
of comparison points to make the code more general; he already
had SBC implemented for Bayesplot on a branch before I wrote this
case study. Please don’t blame Aki Vehtari for my poor uniformity
tests—he gave me advice on better ones I just haven’t acted on yet.

Appendix: Included R code

This all executes before other code, but is not included above to clut-
tering the document before it starts. We need to import the following
R libraries.

simulation-based calibration with stan and rstan 15

library(ggplot2); library(knitr); library(rstan); library(tufte)

We also have some general print utility functions.

println <- function(msg) cat(msg); cat("\n")

printf <- function(pattern, ...) println(sprintf(pattern, ...))

print_file <- function(file) println(readLines(file))

We also have some general R configuration.

options(digits = 2); options(htmltools.dir.version = FALSE)

There’s also configuration for knitr itself.

knitr::opts_chunk$set(

include = TRUE, cache = FALSE, collapse = TRUE, echo = TRUE,

message = FALSE, tidy = FALSE, warning = FALSE, comment = " ",

dev = "png", dev.args = list(bg = ’#FFFFF8’), dpi = 300,

fig.align = "center", fig.width = 7, fig.asp = 0.618, fig.show = "hold",

out.width = "90%")

And finally, configuration for the theme we use to match the Tufte
handout format for R markdown.

ggtheme_tufte <- function() {

theme(plot.background =

element_rect(fill = "#fffff8",

colour = "#fffff8",

size = 0.5,

linetype = "solid"),

plot.margin=unit(c(1, 1, 0.5, 0.5), "lines"),

panel.background =

element_rect(fill = "#fffff8",

colour = "#fffff8",

size = 0.5,

linetype = "solid"),

panel.grid.major = element_line(colour = "white",

size = 1, linetype="dashed"),

panel.grid.minor = element_blank(),

legend.box.background =

element_rect(fill = "#fffff8",

colour = "#fffff8",

linetype = "solid"),

axis.ticks = element_blank(),

axis.text = element_text(family = "Palatino", size = 14),

axis.title.x = element_text(family = "Palatino", size = 16,

margin = margin(t = 15,

simulation-based calibration with stan and rstan 16

r = 0, b = 0, l = 0)),

axis.title.y = element_text(family = "Palatino", size = 16,

margin = margin(t = 0,

r = 15, b = 0, l = 0)),

strip.background = element_rect(fill = "#fffff8",

colour = "#fffff8",

linetype = "solid"),

strip.text = element_text(family = "Palatino", size = 14),

legend.text = element_text(family = "Palatino", size = 14),

legend.title = element_text(family = "Palatino", size = 16,

margin = margin(b = 5)),

legend.background = element_rect(fill = "#fffff8",

colour = "#fffff8",

linetype = "solid"),

legend.key = element_rect(fill = "#fffff8",

colour = "#fffff8",

linetype = "solid")

)

}

Appendix: Session information

In the interest of full reproducibility, here is a record of the depen-
dencies used to generate this case study.

sessionInfo()

R version 3.5.0 (2018-04-23)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: macOS High Sierra 10.13.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils

[5] datasets methods base

other attached packages:

[1] tufte_0.4 rstan_2.18.1

[3] StanHeaders_2.18.0 knitr_1.20

[5] ggplot2_3.1.0 rmarkdown_1.10

simulation-based calibration with stan and rstan 17

loaded via a namespace (and not attached):

[1] Rcpp_0.12.18 highr_0.6

[3] pillar_1.2.3 compiler_3.5.0

[5] plyr_1.8.4 bindr_0.1.1

[7] prettyunits_1.0.2 base64enc_0.1-3

[9] tools_3.5.0 digest_0.6.15

[11] pkgbuild_1.0.2 evaluate_0.10.1

[13] tibble_1.4.2 gtable_0.2.0

[15] pkgconfig_2.0.2 rlang_0.2.1

[17] cli_1.0.0 parallel_3.5.0

[19] yaml_2.2.0 xfun_0.1

[21] loo_2.0.0 bindrcpp_0.2.2

[23] gridExtra_2.3 withr_2.1.2

[25] dplyr_0.7.6 stringr_1.3.1

[27] stats4_3.5.0 rprojroot_1.3-2

[29] grid_3.5.0 tidyselect_0.2.4

[31] glue_1.2.0 inline_0.3.15

[33] R6_2.2.2 processx_3.2.0

[35] callr_3.0.0 purrr_0.2.5

[37] magrittr_1.5 codetools_0.2-15

[39] matrixStats_0.54.0 ps_1.2.0

[41] backports_1.1.2 scales_0.5.0

[43] htmltools_0.3.6 assertthat_0.2.0

[45] colorspace_1.3-2 labeling_0.3

[47] tinytex_0.5 stringi_1.2.2

[49] lazyeval_0.2.1 munsell_0.4.3

[51] crayon_1.3.4

	Why simulation-based calibration?
	Bayesian posteriors
	Simulation-based Calibration
	Application: Continuous integration testing
	Coding Simulation-Based Calibration in Stan
	Hypothesis Testing Uniformity of Ranks
	Coding Simulation-Based Calibration in RStan
	Conclusion

