
Applied Gaussian Processes in Stan
Andre Zapico

Organization of this document

This is designed to be an applied intro, that gives background to the notation, intuition, and application of
Gaussian Process models using Stan. We hope that this anyone with a background in some probability theory,
a little Stan coding, and matrix algebra, will be able to write their own Stan models using Gaussian Processes
after reading this case study. We will start with simple regression cases, and then move onto slightly more
complex models, along the way, explaining some of the benefits of using Gaussian Process models, all while
showing examples on real, publicly available datasets.

Intuition behind Gaussian Processes

Consider a draw (or sometimes called, a “realization”) from a probability distribution. For a continuous
distribution, say the Normal distirbution, we obtain numerical values that are centered on the mean (commonly
referred to as µ) and a dispersion (or a “spread”) that we define as the standard deviation (we usually denote
sigma, but we tend to overload this greek letter with many meanings). In effect, these draws are conditioned
on said mean and standard deviation, and the set of possible realizations is an uncountably infinite set, at
least for continuous distributions. Now let’s further generalize this notion of a realization, and imagine we can,
instead of drawing random numbers, we can draw random functions. Just like conditioning on the mean and
standard deviation above, we can condition this space of random functions on what we call hyper parameters
for a set of random functions. These hyperparameters are denoted by a chosen covariance function, commonly
known as a kernel, which defines the relationship between any two observations in a given dataset.

In short, throughout this document, please keep in mind that we are using MCMC methods to estimate a set
of random functions that describes our data.

Why gaussian processes over other non-linear modeling techniques?

Gaussian Process Notation

Most branches of mathematics come equipped wit there own set of notation, so I find it important to take a
minute to introduce the notation used in much of the Gaussian Process literature. I will try to stay as close
to the notation in Gaussian Processes for Machine Learning, by Rasmussen and Williams 2006.

Gaussian Processes are focused on approximating the following target integral, which we call the marginal
likelihood:

p(y|X) =
∫
p(y|f,X)p(f |X, θ)p(θ)df

where θ is a set containting hyper parameters for the kernels specified in the model, X is the data matrix
(or design matrix). For example, if we use the squared exponential kernel (also commonly known as the
Radial Basis Function, in Stan, we call this gp_exp_quad_cov for Gaussian Process Exponential Quadratic
Covariance function):

k(x′, x) = σ2exp(d(x′, x)2

2l2)

1

then θ in this case is θ := {σ, l}. We use θ because when the kernel, or model, becomes more complex, it
becomes more tedious to write out all of these parameters. You will see this notation in much of the Bayesian
Statistics literature. d(x′, x) is usually the euclidean distance, but we can use other distance metrics as well.
x′ and x just refer to rows of X at different axes. This kernel generates very smooth functions. I will later
generate some functions from different kernels. If you want to see a picture of some functions generated from
this kernel, have a glace at section (BLAHBLAH).

The covariance matrix for the joint Gaussian Process is defined as follows:

Kjoint =
(

KX,X KX,X∗

KX∗,X KX∗,X∗

)
The upper-left and lower-right submatrices of Kjoint are square, and their size depends on the division of the
dataset into training and test sets. Please not that we will seldom use this joint covariance matrix, Kjoint,
when writing or coding models, it’s simply to denote the full process. We can use subsets of this joint process
to generate predictions, as we will see later.

A gaussian process simply generates observations from a multivariate Gaussian distribution conditioned
on the kernels. So, in the following GP (Gaussian Process) (where µ is the mean function and Kθ is the
processes’ joint kernel, or covariance matrix conditioned on the hyper parameters:

p(y|f) ∼ N(f, σ)p(f |X, θ) ∼ GP (µ,Kθ)

we can generate observations for the process by using the well-known equations for the multivariate normal
distribution. For example, we generate the predictive out of sample mean for the GP above by using Kf,f

and Kf∗,f from using subsets of the joint kernel above, Kjoint. The estimates predictive mean for the latent
f∗ then becomes:

f∗ = KX∗,X(KX,X)f

and if want to generate noisy predictions for the predictive mean, similarly, we add some noise on the
diagnonal of the training covariance matrix, K(X,X).

f∗ = KX∗,X(KX,X + σ2
nI)f

where σ2
n is some length n vector indicating the amount of noise we would like to include in our predictions,

and I is the identity matrix.

Similarly, we can find the process covariance matrix by using the equations for the multivariate Gaussian
Distribution’s covariance. We leverage all four disjoint subsets of the full GP’s covariance matrix above. First,
the non-noisy case:

cov(f∗) = Kf∗,f∗ −Kf∗,fK
−1
f,fKf,f∗

and then, in the noisy case, we add a diagonal matrix with some noise, as above:

cov(f∗) = Kf∗,f∗ −Kf∗,f (K−1
f,f + σ2

nI)Kf,f∗

2

Gaussian Processes with Gaussian Likelihoods

In the simplest case, we start with a regression model using GP’s with Gaussian likelihoods. These have
analytic solutions for a subset of realizations of the full model, but we will use Stan and NUTS (the No-U-Turn
Sampler), anyway.

It is important to note that in the case of a Gaussian Likelihood, that in the target intregral above:

p(y|X) =
∫
p(y|f,X)p(f |X, θ)p(θ)df

the f , the latent function in the GP, becomes integrated out, since the following integral is proportional to
the one above:

p(y|X) ∝
∫
p(y|X, θ)p(θ)df

and we need not use the latent f and can instead use y and y∗, the training and testing y, respectively for
our predictive distributions. The predictive mean and covariance for the process (for non-noisy observations)
are then as follows:

y∗ = KX∗,X(KX,X)y

cov(y∗) = KX∗,X∗ −KX∗,XK
−1
X,XKX,X∗

where y∗ denotes the estimates of the process for y, KX,X is the training kernel, KX∗,X is the cross covariance
between training and test sets, etc.

Regression

We’ll start with a simple non-linear regression model using Gaussian Processes. The dataset we’ll use first
can be obtain from the University of California Irvine (UCI) Machine Learning Repository, is entitled Boston
Housing, and contains, unsuprisingly, data concerning suburbs of Boston in 1993, such as per capita crime
rate, a dummy variable if a home tract the river’s boundarys, etc. We’ll take y to be Nitric oxide concentration
N02, and Regress it on all other covariates. Here’s how we format the data. And for consistency, this is how
we’ll do it for all of our models:
suppressMessages(library(rstan)); # load rstan
set.seed(8128); # for replicability

gp regression, housing data
dt = read.csv("housing.txt", sep = "")
indeces = sample(1:nrow(dt)); # randomize indeces
dt = dt[indeces,]; # shuffle the dataset
dt = scale(dt); # scale the dataset
train = floor(.75 * nrow(dt)); # take 75% of the shuffled dataset as training

N = train; # number of training points
D = ncol(dt) - 1; # the dimension of the GP, num columns of K(X,X)
x = as.matrix(dt[1:train, -5]);
y = as.vector(dt[1:train, 5]); # predict N02 concentration

N_pred = nrow(dt) - train; # number of out of sample to predict

3

x_pred = as.matrix(dt[(train + 1):nrow(dt), -5]); # prediction matrix, K(X*,X*)

stan_rdump(list = c("N", "D", "x", "y", "N_pred", "x_pred"),
"housing_input.data.R");

y_test = dt[(train +1):nrow(dt), 5]; # obtain the test set

We’re using stan_rdump because cmdstan, the command line version of Stan, is my preferred Stan interface.
It’s the most stable, and it’s the easist to use when you’re doing dev for the Stan Math Library. So we’ve
formatted our data properly, but what does out Stan model look like? Since this is (perhaps) our first time
writing a GP model using Stan, we’ll walk through most of the lines of the Stan model.

Now, let’s have a look at the Stan code, and see what’s happening!

functions {
vector gp_pred_rng(vector[] x_pred,

vector y, vector[] x,
real magnitude, real length_scale) {

int N1 = rows(y);
int N2 = size(x_pred);
vector[N2] y_pred;
{

matrix[N1, N1] K = cov_exp_quad(x, magnitude, length_scale);
matrix[N1, N1] L_K = cholesky_decompose(K);

vector[N1] L_K_div_y = mdivide_left_tri_low(L_K, y);
vector[N1] K_div_y = mdivide_right_tri_low(L_K_div_y’, L_K)’;
matrix[N1, N2] k_x_x_pred = cov_exp_quad(x, x_pred, magnitude, length_scale);
vector[N2] y_pred_mu = (k_x_x_pred’ * K_div_y);
matrix[N1, N2] v_pred = mdivide_left_tri_low(L_K, k_x_x_pred);
matrix[N2, N2] cov_y_pred = cov_exp_quad(x_pred, magnitude, length_scale) - v_pred’ * v_pred

+ diag_matrix(rep_vector(1e-6, N2));
y_pred = multi_normal_rng(y_pred_mu, cov_y_pred);

}
return y_pred;

}
}
data {

int<lower=1> N;
int<lower=1> D;
vector[D] x[N];
vector[N] y;

int<lower=1> N_pred;
vector[D] x_pred[N_pred];

}
transformed data {

vector[N] mu;
mu = rep_vector(0, N);

}
parameters {

real<lower=0> magnitude;
real<lower=0> length_scale;

real<lower=0> eta;
}

4

transformed parameters {
matrix[N, N] L_K;
{

matrix[N, N] K;
K = gp_exp_quad_cov(x, magnitude, length_scale);
K = add_diag(K, square(eta));
L_K = cholesky_decompose(K);

}
}
model {

magnitude ~ normal(0, 2);
length_scale ~ inv_gamma(5, 5);

y ~ multi_normal_cholesky(mu, L_K);
}
generated quantities {

vector[N_pred] f_pred = gp_pred_rng(x_pred, y, x, magnitude, length_scale);
vector[N_pred] y_pred;

for (n in 1:N_pred) y_pred[n] = normal_rng(f_pred[n], 1.0); // out of sample predictions
}

Since this could be the first Stan GP model we’re using, I’m going to go through the model in some detail.

The function gp_pred_rng is simply producing the posterior predictive mean and covariance, as we’ve see
over and over above. There are some specialized functions that make the linear algebra computations that
Stan uses quicker, but please look in the Stan reference manual for more details.

The data block is what one might expect based on our intro. For example, our vector[D] x[N] is our X
above, and x_pred is our X∗ above, the test set and lower right of Xjoint.

In transformed data, we’re mean centering our GP, so we need a vector of 0’s to represent the multivariate
mean.

In parameters, these are the hyper parameters for our chosen covariance function, the squared exponential:

k(x′, x) = σ2exp(d(x′, x)2

2l2)

where σ is the magnitude and l is the length scale. The ranges are restricted to be positive.

In transformed parameters, we’re generating a kernel, and taking the cholesky decomposition (we can think
of this as the “square root” of a matrix). We add a small constant to the diagonal of this matrix prior to
taking the cholesky decomposition because this gives us some numerical stability (we call this jitter). We
take cholesky decomposition because we want to sample from a multivariate Gaussian distribution (hence,
“Gaussian” process) as follows:

µ+ L′N(0, 1)

where K = L′L is the cholesky decomposition.

In model, as usual we specify the priors for our hyperparameters, and the likelihood function, which is just a
guassian. We use the specialzed multi_normal_cholesky because this helps optimize sampling speed a bit.

In generated quantities, we generate normal observations from our posterior predictive distribution. In
the case where we have a gaussian likelihood,

An aside on prior distributions for Gaussian Process Hyper parameters

5

Run the model

After we compile the model with commandstan, using $CMDSTANDR/make /path/to/gp_regression, we can
then sample with the following command:

$./gp_regression sample num_warmup=400 num_samples=400 data file=housing_input.data.R
output file=gp_regression_housing_output.csv

Let’s do some convergene diagnostics.
gp_csv = read_stan_csv(’gp_regression_housing_output.csv’) # read in cmdstan outputs
summary(gp_csv)$summary[1:3,]; # quick diagnostics for parameters

mean se_mean sd 2.5% 25% 50%
magnitude 0.9938912 0.04607148 0.3398740 0.57591445 0.7406147 0.9180545
length_scale 4.3467515 0.12358812 1.1082253 2.67033925 3.5852750 4.1424900
sig 0.8659040 0.04325343 0.6116959 0.05867075 0.3702530 0.7208260
75% 97.5% n_eff Rhat
magnitude 1.134680 1.819601 54.42165 0.9985008
length_scale 4.872372 6.982028 80.40863 0.9973795
sig 1.244137 2.179730 200.00000 0.9960689

Since this is the first model, let’s take a look at summary for some preliminary diagnostics. When running
chains with cmdstan, there were no divergences, which is great. Upon looking at the summary of our output.
R̂ is close to 1, meaning we’ve let out chains run long enough so get an adequate sample of the posterior
distribution. We also look at the effective sample size. A “perfect” effective sample size, Neff would be equal
to the num_samples we specfied when running command stan. Since I ran about 400 samples, the effective
sample size is a bit low, which could indicate some model misspecification. We also check trace plots and
ACF functions to make sure we have “good” sampling from posterior parameters and the draws from out
posterior are approximately uncorrelated, although I’m leaving these plots out for now.

Let’s do a Bayesian multiple linear regression, and use Root Mean Squared Error (RMSE) to see how the GP
regression with the squared exponential kernel performs in comparison with a linear regression model.

Here’s the code for a Bayesian linear regression. This isn’t necessarily recommended, but we’re using N(0, 1)
priors on regression coefficients, for simplicity. We write the Stan code so we can use the same input data as
the example above, for both good workflow and replicability:

data {
int<lower=1> N;
int<lower=1> D;
matrix[N, D] x;
vector[N] y;

int<lower=1> N_pred;
matrix[N_pred, D] x_pred;

}
parameters {

real alpha;
vector[D] beta;
real<lower=0> sigma;

}
model {

alpha ~ normal(0, 1); // intercept prior
beta ~ normal(0, 1); // regression coef priors
sigma ~ normal(0, 1); // model noise

y ~ normal(alpha + x * beta, sigma); // likelihood function

6

}
generated quantities {

vector[N_pred] y_pred;
for (n in 1:N_pred) y_pred[n] = normal_rng(alpha + x_pred[n] * beta, sigma);

}

Assuming I’ve observed appropriate convergence diagnostics, and there are no issues, let’s calculate RMSE to
compare models, again, for simplicity comparing the means:
gp_csv = read_stan_csv(’gp_regression_housing_output.csv’);
lr_csv =

read_stan_csv(’linear_regression_housing_output.csv’);
gp_samples = extract(gp_csv);
lr_samples = extract(lr_csv);
calculate RMSE
sqrt(sum((colMeans(gp_samples$y_pred) - y_test) ^ 2));

[1] 13.96043

sqrt(sum((colMeans(lr_samples$y_pred) - y_test) ^ 2));

[1] 18.12313

And we can see, the RMSE of the linear model is slightly lower than the GP regression with a non-linear
kernel.

a note on prior distribution selection

Regression with Automatic Relevance Determination (ARD) priors.

Earlier, I mentioned there could be an issue with model misspecficiation due to low effective sample size.
The natural remedy for this is to do a simulation of the generative process, and see if your model is able to
recover parameters in the generative process. This is highly recommended, but I will neglect to do that here.
Instead, I’ll take a different approach that I know will make my model naturally more flexible. We’ve so far
assumed that for the kernel, each dimension has the same length scale. We’re assuming, that nomatter what
covariate, the relationship as we vary along any two axis (or two observations) is the same. This is not a
good assumption, though, correct?

The formula for the squared exponential kernel looks like this, with i, j indexing the rows, where d is indexing
each “column”, or dimension of the dataset:

k(x′, x) = σ2exp(d(x′, x)2

2l2d
)

To implement a seperate length scale for each dimension in a gaussian process regression in Stan, we can simply
extend the length scale argument to have D length scales, i.e. real<lower=0> lengh_scale to real<lower=0>
length_scale[D] and update the pred_rng function to take in a vector of length scales. The func-
tion signature changing from: vector gp_pred_rng(vector[] x_pred, vector y, vector[] x, real
magnitude, real length_scale) to vector gp_pred_rng(vector[] x_pred, vector y, vector[] x,
real magnitude, real[] length_scale). The full stan code for an ARD regression with a squared expo-
nential kernel is almost identical to the above GP regression:

functions {
vector gp_pred_rng(vector[] x_pred,

vector y1, vector[] x,
real magnitude, real[] length_scale,

7

real sigma) {
int N = rows(y1);
int N_pred = size(x_pred);
vector[N_pred] f2;
{

matrix[N, N] K = add_diag(gp_exp_quad_cov(x, magnitude, length_scale),
sigma);

matrix[N, N] L_K = cholesky_decompose(K);
vector[N] L_K_div_y1 = mdivide_left_tri_low(L_K, y1);
vector[N] K_div_y1 = mdivide_right_tri_low(L_K_div_y1’, L_K)’;
matrix[N, N_pred] k_x_x_pred = gp_exp_quad_cov(x, x_pred, magnitude, length_scale);
f2 = (k_x_x_pred’ * K_div_y1);

}
return f2;

}
}
data {

int<lower=1> N;
int<lower=1> D;
vector[D] x[N];
vector[N] y;

int<lower=1> N_pred;
vector[D] x_pred[N_pred];

}
transformed data {

vector[N] mu;
mu = rep_vector(0, N);

}
parameters {

real<lower=0> magnitude;
real<lower=0> length_scale[D];
real<lower=0> sig;

real<lower=0> sigma;
}
transformed parameters {

matrix[N, N] L_K;
{

matrix[N, N] K = gp_exp_quad_cov(x, magnitude, length_scale);
K = add_diag(K, square(sigma));
L_K = cholesky_decompose(K);

}
}
model {

magnitude ~ normal(0, 3);
length_scale ~ inv_gamma(5, 5);
sig ~ normal(0, 1);

sigma ~ normal(0, 1);

y ~ multi_normal_cholesky(mu, L_K);
}
generated quantities {

8

vector[N_pred] f_pred = gp_pred_rng(x_pred, y, x, magnitude, length_scale, sigma);
vector[N] f_pred_in = gp_pred_rng(x, y, x, magnitude, length_scale, sigma);
vector[N_pred] y_pred;
vector[N] y_pred_in;

for (n in 1:N_pred) y_pred[n] = normal_rng(f_pred[n], sigma); // out of sample predictions
for (n in 1:N) y_pred_in[n] = normal_rng(f_pred_in[n], sigma); // out of sample predictions

}

and after, we can again compare RMSE of the 3 models:
load new regression model
gp_ard_csv = read_stan_csv("gp_regression_ard_housing_output.csv")
gp_ard_samples = extract(gp_ard_csv);

calculate RMSE
sqrt(sum((colMeans(lr_samples$y_pred) - y_test) ^ 2));

[1] 18.12313

sqrt(sum((colMeans(gp_samples$y_pred) - y_test) ^ 2));

[1] 13.96043

sqrt(sum((colMeans(gp_ard_samples$y_pred) - y_test) ^ 2));

[1] 3.147226

and the out of sample RMSE for the ARD regression (seperate length scale for each dimension) drops
drastically.

Summing and Multiplying Kernels

We’ve seen one technique that can help improve out of sample prediction of models. One convenient property
of Gaussian Processes is the ability to combine kernels. More specifically, we can use summation and element
wise multiplication, known as the Hamard product to exploit structure in the data to gain interpretability
and predictive performance. For example, if k1, k2, ..., kn are all covariance function, any combination of
Hamard products or sums is still a covariance function:

K = k1(x, x′) ◦ k2(x, x′) + k3(x, x′)

where ◦ is the Hamard Product, or element wise multiplication. As you can see, any combination of kernels
is still a kernel. Let’s see how it works in practice. We’ve only seen so far the squared exponential kernel.
Another convenient kernel is the dot product kernel. From a descrption in Rasmussen and Williams, we can
think of the dot product kernel as a Bayesian Regression with N(0, 1) priors on regression coefficients. We
define the dot product kernel as follows:

k(x′, x) = σ2
o + x · x′

Let’s now use the same GP regression model above, except now summing the dot product kernel and the
squared exponential kernel. The joint covariance function will now be:

K = k1(x, x′) + k2(x, x′)

where k1(x, x′) = σ2
o + x · x′ and k2(x, x′) = σ2exp(d(x′,x)2

2l2
d

)

9

The Stan code is again similar, we just update our gp_pred_rng and our model to have the desired combination
of kernels:

functions {
vector gp_pred_rng(vector[] x_pred,

vector y1, vector[] x,
real magnitude, real[] length_scale,
real sig_0,
real sigma) {

int N = rows(y1);
int N_pred = size(x_pred);
vector[N_pred] f2;
{

matrix[N, N] K = add_diag(gp_dot_prod_cov(x, sig_0) +
gp_exp_quad_cov(x, magnitude, length_scale),
sigma);

matrix[N, N] L_K = cholesky_decompose(K);
vector[N] L_K_div_y1 = mdivide_left_tri_low(L_K, y1);
vector[N] K_div_y1 = mdivide_right_tri_low(L_K_div_y1’, L_K)’;
matrix[N, N_pred] k_x_x_pred = gp_dot_prod_cov(x, x_pred, sig_0) +

gp_exp_quad_cov(x, x_pred, magnitude, length_scale);
f2 = (k_x_x_pred’ * K_div_y1);

}
return f2;

}
}
data {

int<lower=1> N;
int<lower=1> D;
vector[D] x[N];
vector[N] y;

int<lower=1> N_pred;
vector[D] x_pred[N_pred];

}
transformed data {

vector[N] mu;
mu = rep_vector(0, N);

}
parameters {

real<lower=0> magnitude;
real<lower=0> length_scale[D];

real<lower=0> sig_0;

real<lower=0> sigma;
}
transformed parameters {

matrix[N, N] L_K;
{

matrix[N, N] K = gp_dot_prod_cov(x, sig_0) + gp_exp_quad_cov(x, magnitude, length_scale);
K = add_diag(K, square(sigma));
L_K = cholesky_decompose(K);

}

10

}
model {

magnitude ~ normal(0, 3);
length_scale ~ inv_gamma(5, 5);
sig_0 ~ normal(0, 1);

sigma ~ normal(0, 1);

y ~ multi_normal_cholesky(mu, L_K);
}
generated quantities {

vector[N_pred] f_pred = gp_pred_rng(x_pred, y, x, magnitude, length_scale, sig_0,sigma);
vector[N] f_pred_in = gp_pred_rng(x, y, x, magnitude, length_scale, sig_0, sigma);
vector[N_pred] y_pred;
vector[N] y_pred_in;

for (n in 1:N_pred) y_pred[n] = normal_rng(f_pred[n], sigma); // out of sample predictions
for (n in 1:N) y_pred_in[n] = normal_rng(f_pred_in[n], sigma); // out of sample predictions

}

After running model, we notice a few improvements. The first, being convergence. The model fits the data
better, we can see an increase effective sample for all of the GP kernel hyperparameters when we look at the
summary.

If we compare the RMSE again, we see and even better increase in performance. The posterior means for the
sum of the dot product at Squared Exponential ARD model are even closer to the actual y for the data:
gp_2_csv = read_stan_csv("gp_regression_2_housing_output.csv");
gp_2_samples = extract(gp_2_csv);
calculate RMSE
sqrt(sum((colMeans(lr_samples$y_pred) - y_test) ^ 2));

[1] 18.12313

sqrt(sum((colMeans(gp_samples$y_pred) - y_test) ^ 2));

[1] 13.96043

sqrt(sum((colMeans(gp_ard_samples$y_pred) - y_test) ^ 2));

[1] 3.147226

sqrt(sum((colMeans(gp_2_samples$y_pred) - y_test) ^ 2));

[1] 2.940514

Using different kernels

As we can see combining different kernels can give us more accurate predictive distributions. Let’s introduce
a few more kernels. We’ve since seen a very common kernel, the squared exponential kernel:

k(x′, x) = σ2exp(d(x′, x)2

2l2)

This is actually a special case of a larger class of kernels, known as the Matern Kernels, which have the
following form:

11

k(x, x′) = 21−v

Γ(v) (
√

2vd(x, x′)
l

)vKv(
√

(2vr)
v

)

where Kv is the modified Bessel Function and Γ is the gamma function, v and l are parameters. It is common
to take v as the values 1

2 ,
3
2 ,

5
2 , and as v →∞, we recover the squared exponential kernel above. The v = 1

2 is
also known as the exponential kernel, and the v = 3

2 , v = 5
2 are just referred to as the Matern32 and Matern52

respectively. There functional forms are as follows, in order of increasing smoothness:

k(x, x′)v= 1
2

= exp(−d(x, x′)2

2l2)

k(x, x′)v= 3
2

= (1 +
√

3d(x, x′)
l

)exp(−
√

3d(x, x′)
l

)

k(x, x′)v= 5
2

= (1 +
√

5d(x, x′)
l

+ 5d(x, x′)2

3l2)exp(−
√

5d(x, x′)
l

)

k(x′, x)v→∞ = exp(d(x′, x)2

2l2)

Now let’s simulate a dataset and fit a model to these kernels, so we can have a picture of what kind of
functions these kernels can generate independently. We’ll simulate from 1D GP’s from these kernels for ease
of visualization. For the squared exponential kernel, simulating observations is as follows:

data {
int<lower=1> N;
real x[N];

real<lower=0> length_scale;
real<lower=0> magnitude;
real<lower=0> sigma;

}

transformed data {
matrix[N, N] cov = add_diag(gp_exp_quad_cov(x, magnitude, length_scale), 1e-10);
matrix[N, N] L_cov = cholesky_decompose(cov);

}
parameters {}
model {}
generated quantities {

vector[N] f = multi_normal_cholesky_rng(rep_vector(0, N), L_cov);
vector[N] y;
for (n in 1:N)

y[n] = normal_rng(f[n], sigma);
}

The simulated data is as follows:
fix length scale and model noise to 1.0 for example
magnitude = 1.0
length_scale = 1.0
sigma = 1.0

N = 501
x = 20 * (0:(N - 1)) / (N - 1) - 10

stan_rdump(list = c("magnitude", "length_scale","sigma", "N", "x"), file = "simu.data.R");

12

and I’ll use the following cmdstan command to generate the data (linux): ./simulate_exp_quad
sample num_samples=1 num_warmup=0 algorithm=fixed_param data file=simu.data.R output
file=simu_data_exp_quad.csv

The following is one realization of a random function from each of the Matern32, Matern52, and the
Exponential Quadratic Covariance Functions (there are uncountably infinite random functions for each
covariance function). They are visualized on a grid evenly spaced at intervals of 2, each center line being 0.
Notice how the functions are smoother as v increases.

k(x, x′)v= 3
2

= (1 +
√

3d(x, x′)
l

)exp(−
√

3d(x, x′)
l

)

13

k(x, x′)v= 5
2

= (1 +
√

5d(x, x′)
l

+ 5d(x, x′)2

3l2)exp(−
√

5d(x, x′)
l

)

k(x′, x)v→∞ = exp(d(x′, x)2

2l2)

Up next:

In part two we’ll explore a few more cases of applied models in Stan using Gaussian Processes: Modeling
time series with Gaussian Processes, classiciation using Gaussian Processes, and a survival model using GPs.

14

	Organization of this document
	Intuition behind Gaussian Processes
	Gaussian Process Notation
	Gaussian Processes with Gaussian Likelihoods
	Regression
	Up next:

