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Abstract

A probabilistic prediction takes the form of a distribution over pos-
sible outcomes. With proper scoring rules such as log loss or square
error, it is possible to evaluate such a probabilistic prediction against
a true outcome. This short note provides simulation-based evalua-
tion of full Bayesian inference, where we average over our estimation
uncertianty, and two forms of point estimation, one that uses the pos-
terior mode (max a posteriori) and one that uses the posterior mean
(as is typical with variational inference). The example we consider
is a simple Bayesian logistic regression with potentially correlated
predictors and weakly informative priors. To make a long story short,
full Bayes has lower expected log loss and squared error than either
of the point estimators.

Logistic Regression

Observed data

The data consists of binary observations yn ∈ {0, 1} paired with
K-dimensional vectors of predictors1 xn for n ∈ 1 : N. That is, 1 Predictors are also called covariates or

features.x ∈ RN×K is the complete data matrix and xn is its n-th row. We will
assume the columns of x are standardized,2 so that for every column 2 To standardize an unstandardized

variable x = x1, . . . , xN , set

z(x) =
x−mean(x)

sd(x)
.

A standardized value z(x) of 1 corre-
sponds to an original value x that is one
standard deviation above the mean; a
value of -2.5 corresponds to a value two
and a half standard deviations below
the mean.

k corresponding to a predictor, we have

mean(x1:N, k) = 0

and
sd(x1:N, k) = 1.

Data distribution

For the purposes of simulation, we will assume the data have a mul-
tivariate normal distribution with a positive-definite covariance ma-
trix Σ,

xn ∼ multinormal(0, Σ).

We will assume the covariance matrix Σ has a unit diagonal so that
each xn, k has a standard normal marginal distribution.3 3 In symbols, if µ = 0 and diag(Σ) = 1,

then y ∼ multinormal(µ, Σ) implies that
marginally, each yk ∼ normal(0, 1).
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Sampling distribution

The model is parameterized with an intercept α ∈ R and coefficient
vector β ∈ RK. Logistic regression is a generalized linear model
where the linear predictor

α + xn β = α +
K

∑
k=1

xn,k · βk,

represents the log odds of yn being equal to one.4 4 The function logit : (0, 1) → (−∞, ∞)
maps a probability v ∈ [0, 1] to its log
odds,

logit(v) = log
v

1− v
.

Given the log odds, the probability that yn is one is given by in-
verting the log odds function,5

5 The inverse logit function logit−1 :
(−∞, ∞) → (0, 1) maps a log odds
value u ∈ (−∞, ∞) to its corresponding
probability,

logit−1(u) =
1

1 + exp(−u)
.Theinverselogit f unctionisalsoknownasthe(logistic)sigmoid f unction.

Pr[yn = 1] = logit−1(α + xn β).

The sampling distribution is then defined to follow the log odds,

yn ∼ bernoulli(logit−1(α + xn β)),

for observations indexed by n ∈ 1 : N. It is important to note that the
yn are defined by sampling according to the log odds.6 6 Because it is used as a decision process

to choose a response, a common simu-
lation mistake is to treat the log odds as
a deterministic threshold and define

yn =

{
1 if logit−1(α + xn β) > 1

2

0 otherwise.

Such an approach typically leads
to separable data leading to infinite
maximum likelihood coefficients.
As some indication of how common
this mistake is in simulating logistic
regression data, it comes up several
times in the first page of hits for the
Google query (simulate data with
logistic regression), e.g., (1) (2), (3).

Prior distribution

Given the logistic scale and standardized predictors, we assume
weakly informative priors,7

7 Weakly informative priors provide
the scale of a parameter; for logistic
regression, log odds outside of the -5
to 5 range have very low or very high
probabilities. For example,

logit−1(6) ≈ 0.9975.

So we keep the coefficients in the -3 to
3 range to match the predictors in the
same range so that their products tend
to not be too extreme on the log odds
scale.

α, βk ∼ normal(0, 2),

for k ∈ 1 : K.

Predictive distribution

Suppose we also have some observed test predictors x̃n for n ∈ 1 : Ñ,
but we do not know the corresponding outcomes, ỹn. These out-
comes need to be predicted based on the predictors x̃n and the
knowledge of the values of the regression coefficients, α and β. Al-
though not strictly necessary, we will assume for the sake of sim-
ulation that x̃n has the same distribution as the training predictors
x.8

8 If the conditions are not matched,
poststratification can be used to make
collective predictions, such as esti-
mating accuracy, on mismatched data
sets.

If we knew the parameter values (α, β), we would know that the
distribution of ỹn is just the sampling distribution,

ỹn ∼ bernoulli(logit−1(α + x̃n β)).

Inference

In general, we do not know the regression coefficients α and β; we
only observe data (x, y) that lets us infer their values with some

https://stats.stackexchange.com/questions/282804/is-it-possible-to-simulate-logistic-regression-without-randomness
https://stats.stackexchange.com/questions/46523/how-to-simulate-artificial-data-for-logistic-regression/46525
https://www.statalist.org/forums/forum/general-stata-discussion/general/1475130-simulating-data-for-logistic-regression-with-categorical-variables?p=1475211#post1475211
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uncertainty. Similarly, we do not know the outcomes ỹn we wish to
predict based on their predictors x̃n and the previously observed data
(x, y).

Bayesian inference

Full Bayesian inference averages9 over the uncertainty in our param- 9 For continuous quantities, averages of
functions f (u) weighted by a probabil-
ity function p(u) for a random variable
U are given by expectations

E[ f (U)] =
∫

U
f (u) · p(u)du.

eters given the data. Symbolically, this can be expressed in terms of a
posterior distribution, as given by Bayes’s rule,

p(α, β | x, y) =
p(y | α, β, x) · p(α, β)

p(y)
∝ p(y | α, β, x) · p(α, β).

with terms for the sampling distribution p(y | α, β, x) and prior
p(α, β).

What we really want is inference for ỹ, the unobserved outcomes.
These are defined by taking a weighted average of predictions p(ỹ |
x̃, α, β), where the weights are determined by the posterior density
p(α, β | x, y),

p(ỹ | x̃, x, y) =
∫

R

∫
RK

p(ỹ | x̃, α, β) · p(α, β | x, y)dβ dα.

Given posterior draws
(

α(m), β(m)
)

,10 the posterior predictive 10 These may be (anti-)correlated, as in
the draws produced by Markov chain
Monte Carlo.

distribution may be calculated by plugging in draws and averaging,

p(ỹ | x̃, x, y) ≈ 1
M

M

∑
m=1

p(ỹ | x̃, α(m), β(m)).

Expected error in the estimate decreases as O(1/
√

M).11 11 Technically, the denominator the
square root of the effective sample size,
but this is linearly related to M, so the
result holds as stated up to an order.Max a posterior approximate inference

The maximum a posteriori (MAP) estimator for parameters (α, β) is
given by

α∗, β∗ = arg maxα, β p(α, β | x, y).

It is common in machine learning applications to simply plug-in
(α∗, β∗) for inference, using the approximation

p(ỹ | x̃, x, y) ≈ p(ỹ | x̃, α∗, β∗).

The approximation arises because the values α∗, β∗ are being
treated as certain when the data (x, y) provide only limited infor-
mation about their values.
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Variational approximation inference

Variational Bayes (VB) attempts to find an approximate distribution
matching the posterior. In machine learning settings, the goal is typ-
ically to extract point estimates corresponding to the approximate
posterior mean values.12 If the VB approximation were perfect, the 12 It’s possible to extract posterior sim-

ulation draws given the full variational
approximation, but that is almost never
done other than in Stan. Typically,
variational approximations are mean
field (diagonal covariance), and so the
posterior approximation is poor when
parameters are correlated, as in typi-
cal logistic regression applications to
language, vision, survey questions, or
other correlated system of predictors.
It is typical instead to just plug in the
approximate posterior means found by
variational inference.

optimizer will find the true posterior means.13 For the purposes of

13 This doesn’t matter if it uses a mean-
field approximation or not; best case, it
recovers the true posterior means.

simulation, we are going to suppose we have a good enough varia-
tional approximation to find the true posterior means.14

14 This is very unlikely in practice
given the nature of the variational
approximations, but given the variety of
variational approximations possible and
algorithms to fit them, this seemed like
a good compromise for evaluation.

We can define the posterior means directly as conditional posterior
expectations,

α̂, β̂ = E[α, β | x, y]

=
∫

R

∫
RK (α, β) · p(α, β | x, y)dβ dα.

We can calculate the exact posterior means to arbitrary precision
using simulated draws α(m), β(m) from the posterior,

α̂ =
1
M

M

∑
m=1

α(m)

β̂ =
1
M

M

∑
m=1

β(m).

Unlike maximum likelihood estimates, posterior mean estimates
are unbiased and have the pleasant property of minimizing expected
square error in the parameter estimates (we define square error be-
low).

Given the posterior means, we can define another point-based
approximation of the predictive distribution,

p(ỹ | x̃, x, y) ≈ p(ỹ | x̃, α̂, β̂).

As with posterior mode estimates, posterior mean estimates are
approximate in that they assume that α̂, β̂ are estimated correctly,
whereas there is residual uncertainty after observing the training
data (x, y).

Simulation Experiment

In this section, we’re going to simulate some correlated predictors
and outcomes and then fit our logistic regression model with full
Bayes, posterior modes, and posterior means for the purposes of
evaluating predictive accuracy.

Stan program

Here’s a Stan program implementing the logistic regression model.
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data {

int<lower = 0> K;

int<lower = 0> N;

matrix[N, K] x;

int y[N];

int N_test;

matrix[N_test, K] x_test;

int y_test[N_test];

}

parameters {

real alpha;

vector[K] beta;

}

model {

alpha ~ normal(0, 2);

beta ~ normal(0, 2);

y ~ bernoulli_logit(alpha + x * beta);

}

generated quantities {

vector[N_test] E_y_test = inv_logit(alpha + x_test * beta);

real log_loss = -bernoulli_logit_lpmf(y_test | alpha + x_test * beta);

real sq_loss = dot_self(to_vector(y_test) - E_y_test);

}

The program includes not only the data and model declaration,
but also the predictive distributions for square error and log loss. The
true values of the test cases are provided to the program, but they are
not used during training.15 15 Stan’s generated quantities block is

executed each iteration based on the
parameter draws for that iteration; no
information in the generated quantities
block flows back to parameter estima-
tion. For semi-supervised learning in
cases such as naive Bayes or HMMs
where there isn’t the factorization of
predictors found in logistic regres-
sion, we would need to move the tests
into the model block to provide full
Bayesian inference that also uses infor-
mation in the test predictors (but not
the test outcomes).

Simulated Data

We’ll assume the predictor vectors are multivariate normal with
K× K covariance matrix Σ defined by

Σi,j = ρ|i−j|,

for some ρ ∈ (0, 1).
Specifically, we’ll take K = 50, ρ = 0.9, and N = ‘rN‘. Here’s what

the matrix looks like for K = 5 and ρ = 0.9.

Σ =


1 0.9 0.81 0.73 0.66

0.9 1 0.9 0.81 0.73
0.81 0.9 1 0.9 0.81
0.73 0.81 0.9 1 0.9
0.66 0.73 0.81 0.9 1


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With highly correlated predictors, a predictor vector of size K
provides less information than if the predictors were not correlated.
How much less information depends on the degree of correlation—if
two predictors are perfectly correlated or anti-correlated, there is no
new information.

Loss Functions for Evaluating predictions

Our goal is to provide predictive estimates of the probability that
an unobserved outcome ỹn takes value 1, given predictors x̃n and
training data (x, y). In symbols, we want to estimate

Pr [ỹn = 1 | x̃n, x, y] .

To do so, we want to use a proper scoring rule.16 We will consider 16 Proper scoring rules are ones which
are optimized by the true distribution.
Accuracy (aka 0/1 loss), as is com-
monly used in machine learning, is not
a proper scoring rule.

three proper scoring functions (log loss, square loss, spherical loss)
and one improper one (absolute loss).

Log loss

The simplest proper scoring rule is just the log probability (density
or mass) of the true result under the model. For a given target yn and
probabilistic prediction ŷn, the log loss is defined by

logloss(yn, ŷn) = − log bernoulli(yn | ŷn)

= (yn = 1) ? − log(ŷn) : − log(1− ŷn).

= − log(1− |yn − ŷn|).

Extending to a complete test set y and response set ỹ,

logloss(y, ỹ) =
N

∑
n=1

logloss(yn, ŷn).

We will report log loss as a rate per item after dividing by the
number of test items, Ñ.

If we think of our test set elements ỹn as draws from the true dis-
tribution p(ỹn | x̃n), then log loss provides a Monte Carlo estimate of
the cross entropy rate from the true distribution of outcomes to the
probabilistic forecasts.17 17 Cross-entropy is defined from a

density p to a density q as

H[p, q] = −
∫

Y p(y | x) log q(y | x)dy,

≈ − 1
Ñ ∑Ñ

n=1 log q(ỹn | x̃n).

Square error

When the estimate takes a point form, as in our estimate of a proba-
bility, we can compute square loss,18 18 Also known as a Brier score in ma-

chine learning after Glenn Brier, the
statistician who introduced it in 1950.sqloss(yn, ỹn) = (yn − ŷn)

2.
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Extending to an entire test set, the loss may be expressed compactly
as

sqloss(y, ŷ) = = (y− ŷ)> (y− ŷ)

= ∑Ñ
n=1(yn − ŷn)2.

Square loss is important in probability theory as it is the loss un-
der which the average is the optimal estimator.19 Put another way, 19 In symbols, for x ∈ RN ,

mean(x) = argminu

N

∑
n=1

(u− xn)
2

.

the posterior mean is the point estimate that minimizes expected
square loss.

Typically, when considering square error, we consider the square
error rate by dividing by the number of test items, and then take the
square root of that to put it back on the natural probability scale; the
result is called “root mean square error” (RMSE),20 20 Taking means and square roots are

monotonic operations and do not
change the ordering of comparisons.

rmse(y, ŷ) =

√
sqloss(y, ŷ)

size(y)

Spherical loss

Given an outcome yn and predicted probability ŷn, the spherical loss
is

sphereloss(yn, ŷn) = 1− |y− ŷ|√
ŷ2 + (1− ŷ)2

.

Extending to a whole data set, we just sum the spherical losses,

sphereloss(y, ŷ) =
N

∑
n=1

sphereloss(yn, ŷn).

Although this is a proper loss function, we will not be evaluating
spherical loss because of the difficulty in interpretation—it is on the
natural scale of y, but adjusted by the skew in the prediction. This
reduces losses when predictive probabilities ŷ are near one half and
increases losses when predictions are extreme (near zero or one).

Absolute error

The final loss function we consider is improper, and corresponds
to the absoute error, rather than square error. The absolute value
function keeps the error positive,

absloss(yn, ỹn) = |ỹn − ŷn| .

For multiple yn, we sum the absolute losses. But we report them as
an average given that the values are on the natural probability scale.

Absolute error is not a proper probabilistic scoring rule.
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Plotting the loss functions

The absolute error can range between 0 and 1. The square error has
the same range. Log loss is minimized at zero, but unbounded as
error approaches one. We can plot these functions

Figure 1: Three loss functions plotted
as a function of absolute error. Because
the dimensions of the loss functions
vary and the scale is irrelevant for
comparison, we have multiplied the loss
functions so that they have loss one half
for an absolute error of one half. For
absolute errors between zero and one
half, square error grows most slowly
and absolute error increases the fastest.
For errors above one half, square error
grows fastest initially, then log loss
takes over for very high absolute error
(above ninety percent or so).

Each loss function has been multiplicatively normalized to provide
a loss of one half for an absolute error of one half while leaving a loss
of zero for an absolute error of zero.

It’s also useful to observe the plot on the log scale to visualize the
behavior of the loss functions at values near zero.

Figure 2: Log scale version of the
previous plot of loss versus absolute
error. The log scale highlights the
differing behavior for small absolute
errors.

Evaluation with Stan

Fitting the model we provided earlier to our simulate data in Stan
provides the following output, where we have only included the first
coefficient, β1.
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Inference for Stan model: logistic-regression.

4 chains, each with iter=4000; warmup=2000; thin=1;

post-warmup draws per chain=2000, total post-warmup draws=8000.

mean se_mean sd 1% 99%

alpha -1.68 0.01 0.66 -3.3 -0.21

beta[1] -0.12 0.01 1.14 -2.8 2.61

log_loss 294.53 0.47 38.44 216.2 392.90

sq_loss 53.83 0.05 4.77 43.6 65.60

n_eff Rhat

alpha 7997 1

beta[1] 8751 1

log_loss 6652 1

sq_loss 8607 1

Samples were drawn using NUTS(diag_e) at Mon Apr 22 20:40:50 2019.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The 1% and 99% values provide the ends of the central 98%
posterior interval on log loss and square loss for parameter values
α(m), β(m), drawn from the posterior. With only ‘rN‘ training exam-
ples with correlated parameters, there is a great deal of uncertainty
in the posteriors for coefficients and hence for predictions and for
loss versus the test set. The range of log loss and square loss values
shows the variability in those metrics across draws from the poste-
rior.

Full Bayesian inference

We first consider full Bayesian inference, where our estimate is de-
rived from

p(ỹn | x̃n, x, y) =
∫

p(ỹn | x̃n, α, β) · p(α, β | x, y)d(α, β).

The result of running the simulation yields the following losses.

BAYES: sq error 40.20 root mean sq error 0.28

BAYES: log loss 133.26 log loss rate 0.27

The root mean square error being reported is the square root of the
average square loss per test item. The log loss rate is just the log loss
divided by the number of test items.
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Variational inference

Using the draws from the posterior, we calculate the posterior means
(α̂, β̂) and then plug those in to use the estimate

p(ỹn | x̃n, α̂, β̂).

The resulting errors are as follows.

VB: sq error 46.75 root mean sq error 0.31

VB: log loss 224.08 log loss rate 0.45

Max a posterior inference

Here, we use Stan’s optimizing function to find the maximum a
posteriori (MAP) estimates α∗, β∗ and proceed to plug those in for
inference,

p(ỹn | x̃n, α∗, β∗).

The resulting errors are as follows.

MAP: sq error 44.34 root mean sq error 0.30

MAP: log loss 165.34 log loss rate 0.33

Probabilistic Training and Test Data

Traditionally, we estimate (i.e., train) logistic regression models based
on dichotomous observations

yn ∈ {0, 1}.

Now suppose instead that the outcomes yn are not known exactly,
but only with some uncertainty. That is, rather than knowing yn, we
only have a probability estimate of whether yn = 1 or yn = 0. Such
uncertainty can arise from noisy measurements of the true yn value.
For example, the data may be crowdsourced human data coding,21 21 Also known as data rating, annota-

tion, and labeling.or it may arise from the application of imprecise heuristics. Alter-
natively, we may have uncertainty propagated from measurement
devices such as RNA-seq readers of genomic sequences.

The math all generalizes if we assume that instead of dichotomous
outcomes yn ∈ {0, 1}, we have probabilistic outcomes,

φn = Pr[yn = 1 | xn].

Typically these φn are the estimates from another probabilistic
model, such as a noisy measurement model of human data coding
or a model of fluorescence response and image processing steps for
RNA-seq data.22 22 Ideally, the predictive variables φ

estimated by the training data measure-
ment error model and the parameters
α, β of a regression based on that model
will be modeled and estimated jointly.
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Weighted regression

Training is simple with weighted observations. The log likelihood
function for dichotomous data yn ∈ {0, 1} is as defined previously,

log p(y | x, α, β) = log ∏N
n=1 p(yn | xn, α, β)

= ∑N
n=1 log bernoulli(yn | logit−1(α + xn β)).

To generalize to continuous outcomes φn, we work in expecta-
tion with respect to the φn. So instead of the likelihood, we use a
weighted version,

N

∑
n=1

φn · log bernoulli(1 | logit−1(α + xn β))

+ (1− φn) · log bernoulli(0 | logit−1(α + xn β)).

This quantity simply replaces the likelihood in the model. If the
values of φn are 0 or 1, it reduces to our original likelihood function.

In Stan, our original vectorized sampling statement,

y ~ bernoulli_logit(alpha + x * beta);

is equivalent to the unrolled version

for (n in 1:N)

target += bernoulli_logit(y[n] | alpha + x[n] * beta);

The weighted version computes the density as the expected log
likelihood given probability estimates φn = Pr[yn = 1 | xn],

for (n in 1:N) {

target += phi[n] * bernoulli_logit(1 | alpha + x[n] * beta);

target += (1 - phi[n]) * bernoulli_logit(0 | alpha + x[n] * beta);

}

It’s important that both target increment statements are used. The
effect of incrementing both 0 and 1 results in proportion to their
weights provides a form of data-driven regularization, where the
resulting density is maximized when

φn = logit−1(α + xn β).

That is, we penalize coefficients for predicting probabilities for yn

that are too far away from the training set probabilities φn. If we had
sampled rather than weighted, the result would be the same in the
limit of increasing amounts of data.

The resulting formulation is not properly generative—there is no
way to generate the “observations” φn from the regression coeffi-
cients α, β and the observed predictors xn.
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In this particular case, because we know that the log odds are
given by logit(φn), instead of using a weighted logistic regression, we
can simply train a standard linear regression

logit(φn) ∼ normal(α + xn β, σ)

and use the coefficients α, β predictively for new data with a logit
link function,

ỹn ∼ bernoulli(logit−1(α + x̃n β)).

Weighted logistic regression with Stan

Here’s the full Stan model for weighted logistic regression. It follows
the description in the previous section. The data has been modified
to read in a vector of probabilities phi[1:N] rather than a binary
array y[1:N].

data {

int<lower = 0> K;

int<lower = 0> N;

matrix[N, K] x;

vector[N] phi;

}

transformed data {

vector[N] inv_logit_phi = inv_logit(phi);

}

parameters {

real alpha;

vector[K] beta;

}

model {

vector[N] log_odds = alpha + x * beta;

alpha ~ normal(0, 2);

beta ~ normal(0, 2);

for (n in 1:N) {

target += inv_logit_phi[n] * bernoulli_logit_lpmf(1 | log_odds[n]);

target += (1 - inv_logit_phi[n]) * bernoulli_logit_lpmf(0 | log_odds[n]);

}

}

What we want to compare is how well we can estimate the model
with draws from the distribution given by φ versus estimating it
using the φ directly. We will again simulate N = 200 data points, but
this time rather than drawing yn ∼ bernoulli(logit−1(α + xn β), we
will add noise to our estimates of φn,23 23 If we do not add noise, the values

of α and β will be exactly identified if
N > K + 1 and the predictors are not
perfectly correlated.

φn = α + xn β + εn
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where
εn ∼ normal(0, 0.25).

which is roughly give or take 10% for a value of 50% when converted
back to the probability scale; a noise scale of 0.5 rather than 0.25

would lead to an error of plus or minus 20% or so.
Here are the results of estimating with these approaches compared

to the true values.

true: alpha = 0.14 beta[1] = 0.12 beta[2] = 0.32

weighted: alpha = 0.15 beta[1] = 0.22 beta[2] = 0.28

sampled: alpha = -0.30 beta[1] = 0.99 beta[2] = 2.46

Even with that much noise added to the log odds in the weighted
case, the estimates from a training set of size 200 are much better, as
can be seen from the handful of coefficients reported above.

The moral of this story is that binary data is very weak, but proba-
bilistic data is much stronger.

Weighted evaluation with scoring functions

All of our loss functions generalize to compute expected loss when
faced with data of the form φn = Pr[yn = 1 | xn, α, β]. For example,
given the linear estimate ŷn = α + xn β of the log odds that yn = 1, all
of our loss functions are minimized when φn = logit−1(α + xn β).

This transition from evaluation on a single outcome to weighted
evaluations where the truth has a probability is commonly used in
evaluating forecasts. The idea is that there’s a true uncertainty of yn

given the predictors xn, and we want to evaluate whether our infer-
ence system is estimating this uncertain properly. Lifting the scoring
rules to deal with probabilistic test data yields general scoring func-
tions as are used in the probabilistic forecasting literature. In the
simplest case of binary distributions, the general scoring function
corresponds to estimating the cross-entropy rate from the true prob-
ability distribution bernoulli(φn) to the estimated one bernoulli(ŷn).
That is, the log loss rate estimates the cross-entropy rate, which is the
cost of coding variables yn using estimates ŷn which given that log
loss is a proper scoring rule, is minimized when ŷn = φn.

Conclusion

When the model is well specified for the problem and there is not a
huge amount of data, as in our logistic regression example, it’s much
more accurate to use Bayesian inference. With large amounts of data
relative to the number of predictors, approximate methods perform
almost as well as full Bayes.
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One may argue that “big data” abound in real applications and
“little data” should not be a problem. In reality, much of the big
data we have consists of lots of little data. We may read millions of
base pairs, but the amount of data we might have about two splice
variants of interest is typically on the scale of the simulations done
in this paper. Similarly, if we look at e-commerce, we have tons of
data, but relatively little data about individual products or customers,
as new users and items are continually added and old behaviors
change.

To summarize the quantitative results in this short note, the error
rates for a training set of size 200 with 50 correlated predictors are
summarized in the following table.

Inference root mean square error log loss rate

Full Bayes 0.28 0.27

MAP (posterior mode) 0.3 0.33

VB (posterior mean) 0.31 0.45

The result from taking a single posterior draw (α(m), β(m)) as a
point estimate depends heavily on the draw, but almost all such
draws are worse than the posterior mode and the posterior mean.

Appendix A: Some alternative evals

We also include a table of evaluation results for full Bayes versus
plugging in either the posterior mode (MAP) or mean (VB). We only
run a single simulation for each set of conditions as it provides an
overall feel for the trend of the evaluations.24 24 Combining simulations is tricky as

each simulated condition has a different
underlying entropy and hence different
lower bound on cross-entropy and
hence log loss.

estimator N K rho log_loss_rate rmse

1 Bayes 8 2 0.0 0.89 0.57

2 MAP 8 2 0.0 0.92 0.57

3 VB 8 2 0.0 1.06 0.59

4 Bayes 8 2 0.9 0.82 0.51

5 MAP 8 2 0.9 0.90 0.51

6 VB 8 2 0.9 1.06 0.52

7 Bayes 8 8 0.0 0.66 0.48

8 MAP 8 8 0.0 0.88 0.54

9 VB 8 8 0.0 0.92 0.53

10 Bayes 8 8 0.9 0.99 0.61

11 MAP 8 8 0.9 1.37 0.66

12 VB 8 8 0.9 1.57 0.67

13 Bayes 32 2 0.0 0.71 0.51

14 MAP 32 2 0.0 0.71 0.51
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estimator N K rho log_loss_rate rmse mae
Bayes 8 2 0.0 0.89 0.57 0.51

MAP 8 2 0.0 0.92 0.57 0.50

VB 8 2 0.0 1.06 0.59 0.51

Bayes 8 2 0.9 0.82 0.51 0.39

MAP 8 2 0.9 0.90 0.51 0.39

VB 8 2 0.9 1.06 0.52 0.37

Bayes 8 8 0.0 0.66 0.48 0.43

MAP 8 8 0.0 0.88 0.54 0.44

VB 8 8 0.0 0.92 0.53 0.41

Bayes 8 8 0.9 0.99 0.61 0.57

MAP 8 8 0.9 1.37 0.66 0.58

VB 8 8 0.9 1.57 0.67 0.59

Bayes 32 2 0.0 0.71 0.51 0.46

MAP 32 2 0.0 0.71 0.51 0.46

VB 32 2 0.0 0.72 0.51 0.46

Bayes 32 2 0.9 0.63 0.47 0.43

MAP 32 2 0.9 0.63 0.47 0.43

VB 32 2 0.9 0.63 0.47 0.42

Bayes 32 8 0.0 1.02 0.60 0.54

MAP 32 8 0.0 1.09 0.61 0.54

VB 32 8 0.0 1.27 0.64 0.55

Bayes 32 8 0.9 0.72 0.51 0.49

MAP 32 8 0.9 0.73 0.51 0.49

VB 32 8 0.9 0.75 0.52 0.48

Bayes 32 32 0.0 0.65 0.47 0.40

MAP 32 32 0.0 1.01 0.52 0.36

VB 32 32 0.0 1.76 0.55 0.35

Bayes 32 32 0.9 0.59 0.45 0.35

MAP 32 32 0.9 0.76 0.49 0.34

VB 32 32 0.9 0.98 0.50 0.31

Bayes 128 2 0.0 0.60 0.45 0.42

MAP 128 2 0.0 0.60 0.45 0.42

VB 128 2 0.0 0.60 0.45 0.42

Bayes 128 2 0.9 0.54 0.43 0.37

MAP 128 2 0.9 0.54 0.43 0.37

VB 128 2 0.9 0.54 0.43 0.37

Bayes 128 8 0.0 0.44 0.38 0.29

MAP 128 8 0.0 0.44 0.38 0.29

VB 128 8 0.0 0.44 0.38 0.28

Bayes 128 8 0.9 0.67 0.47 0.38

MAP 128 8 0.9 0.68 0.47 0.38

VB 128 8 0.9 0.69 0.47 0.37

Bayes 128 32 0.0 0.88 0.50 0.32

MAP 128 32 0.0 1.10 0.51 0.32

VB 128 32 0.0 1.49 0.52 0.31

Bayes 128 32 0.9 0.50 0.37 0.24

MAP 128 32 0.9 0.54 0.38 0.23

VB 128 32 0.9 0.61 0.38 0.21

Bayes 128 128 0.0 0.53 0.42 0.35

MAP 128 128 0.0 0.76 0.44 0.26

VB 128 128 0.0 2.20 0.47 0.24

Bayes 128 128 0.9 0.35 0.33 0.22

MAP 128 128 0.9 0.44 0.33 0.17

VB 128 128 0.9 0.90 0.35 0.15

Bayes 512 2 0.0 0.64 0.47 0.42

MAP 512 2 0.0 0.64 0.47 0.42

VB 512 2 0.0 0.65 0.47 0.42

Bayes 512 2 0.9 0.70 0.50 0.49

MAP 512 2 0.9 0.70 0.50 0.49

VB 512 2 0.9 0.70 0.50 0.49

Bayes 512 8 0.0 0.50 0.41 0.33

MAP 512 8 0.0 0.50 0.41 0.33

VB 512 8 0.0 0.50 0.41 0.33

Bayes 512 8 0.9 0.47 0.39 0.32

MAP 512 8 0.9 0.47 0.39 0.32

VB 512 8 0.9 0.47 0.39 0.32

Bayes 512 32 0.0 0.42 0.37 0.23

MAP 512 32 0.0 0.42 0.37 0.23

VB 512 32 0.0 0.44 0.37 0.23

Bayes 512 32 0.9 0.37 0.35 0.24

MAP 512 32 0.9 0.37 0.35 0.24

VB 512 32 0.9 0.38 0.36 0.23

Bayes 512 128 0.0 0.41 0.36 0.20

MAP 512 128 0.0 0.61 0.39 0.19

VB 512 128 0.0 1.02 0.39 0.18

Bayes 512 128 0.9 0.67 0.42 0.24

MAP 512 128 0.9 0.90 0.45 0.25

VB 512 128 0.9 1.22 0.45 0.24

Table 2: Log loss rate, root mean square
error (rmse), and mean absolute error
(mae) for full Bayes and plug-in es-
timates with posterior mode (MAP)
and mean (VB) given N observations,
K predictors, and a base ρ correlation
between adjacent predictors.
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estimator N K rho log_loss_rate rmse mae
Bayes 8 2 0.0 0.89 0.57 0.51

MAP 8 2 0.0 0.92 0.57 0.50

VB 8 2 0.0 1.06 0.59 0.51

Bayes 8 2 0.9 0.82 0.51 0.39

MAP 8 2 0.9 0.90 0.51 0.39

VB 8 2 0.9 1.06 0.52 0.37

Bayes 8 8 0.0 0.66 0.48 0.43

MAP 8 8 0.0 0.88 0.54 0.44

VB 8 8 0.0 0.92 0.53 0.41

Bayes 8 8 0.9 0.99 0.61 0.57

MAP 8 8 0.9 1.37 0.66 0.58

VB 8 8 0.9 1.57 0.67 0.59

Bayes 32 2 0.0 0.71 0.51 0.46

MAP 32 2 0.0 0.71 0.51 0.46

VB 32 2 0.0 0.72 0.51 0.46

Bayes 32 2 0.9 0.63 0.47 0.43

MAP 32 2 0.9 0.63 0.47 0.43

VB 32 2 0.9 0.63 0.47 0.42

Bayes 32 8 0.0 1.02 0.60 0.54

MAP 32 8 0.0 1.09 0.61 0.54

VB 32 8 0.0 1.27 0.64 0.55

Bayes 32 8 0.9 0.72 0.51 0.49

MAP 32 8 0.9 0.73 0.51 0.49

VB 32 8 0.9 0.75 0.52 0.48

Bayes 32 32 0.0 0.65 0.47 0.40

MAP 32 32 0.0 1.01 0.52 0.36

VB 32 32 0.0 1.76 0.55 0.35

Bayes 32 32 0.9 0.59 0.45 0.35

MAP 32 32 0.9 0.76 0.49 0.34

VB 32 32 0.9 0.98 0.50 0.31

Bayes 128 2 0.0 0.60 0.45 0.42

MAP 128 2 0.0 0.60 0.45 0.42

VB 128 2 0.0 0.60 0.45 0.42

Bayes 128 2 0.9 0.54 0.43 0.37

MAP 128 2 0.9 0.54 0.43 0.37

VB 128 2 0.9 0.54 0.43 0.37

Bayes 128 8 0.0 0.44 0.38 0.29

MAP 128 8 0.0 0.44 0.38 0.29

VB 128 8 0.0 0.44 0.38 0.28

Bayes 128 8 0.9 0.67 0.47 0.38

MAP 128 8 0.9 0.68 0.47 0.38

VB 128 8 0.9 0.69 0.47 0.37

Bayes 128 32 0.0 0.88 0.50 0.32

MAP 128 32 0.0 1.10 0.51 0.32

VB 128 32 0.0 1.49 0.52 0.31

Bayes 128 32 0.9 0.50 0.37 0.24

MAP 128 32 0.9 0.54 0.38 0.23

VB 128 32 0.9 0.61 0.38 0.21

Bayes 128 128 0.0 0.53 0.42 0.35

MAP 128 128 0.0 0.76 0.44 0.26

VB 128 128 0.0 2.20 0.47 0.24

Bayes 128 128 0.9 0.35 0.33 0.22

MAP 128 128 0.9 0.44 0.33 0.17

VB 128 128 0.9 0.90 0.35 0.15

Bayes 512 2 0.0 0.64 0.47 0.42

MAP 512 2 0.0 0.64 0.47 0.42

VB 512 2 0.0 0.65 0.47 0.42

Bayes 512 2 0.9 0.70 0.50 0.49

MAP 512 2 0.9 0.70 0.50 0.49

VB 512 2 0.9 0.70 0.50 0.49

Bayes 512 8 0.0 0.50 0.41 0.33

MAP 512 8 0.0 0.50 0.41 0.33

VB 512 8 0.0 0.50 0.41 0.33

Bayes 512 8 0.9 0.47 0.39 0.32

MAP 512 8 0.9 0.47 0.39 0.32

VB 512 8 0.9 0.47 0.39 0.32

Bayes 512 32 0.0 0.42 0.37 0.23

MAP 512 32 0.0 0.42 0.37 0.23

VB 512 32 0.0 0.44 0.37 0.23

Bayes 512 32 0.9 0.37 0.35 0.24

MAP 512 32 0.9 0.37 0.35 0.24

VB 512 32 0.9 0.38 0.36 0.23

Bayes 512 128 0.0 0.41 0.36 0.20

MAP 512 128 0.0 0.61 0.39 0.19

VB 512 128 0.0 1.02 0.39 0.18

Bayes 512 128 0.9 0.67 0.42 0.24

MAP 512 128 0.9 0.90 0.45 0.25

VB 512 128 0.9 1.22 0.45 0.24

Table 3: Foo
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15 VB 32 2 0.0 0.72 0.51

16 Bayes 32 2 0.9 0.63 0.47

17 MAP 32 2 0.9 0.63 0.47

18 VB 32 2 0.9 0.63 0.47

19 Bayes 32 8 0.0 1.02 0.60

20 MAP 32 8 0.0 1.09 0.61

21 VB 32 8 0.0 1.27 0.64

22 Bayes 32 8 0.9 0.72 0.51

23 MAP 32 8 0.9 0.73 0.51

24 VB 32 8 0.9 0.75 0.52

25 Bayes 32 32 0.0 0.65 0.47

26 MAP 32 32 0.0 1.01 0.52

27 VB 32 32 0.0 1.76 0.55

28 Bayes 32 32 0.9 0.59 0.45

29 MAP 32 32 0.9 0.76 0.49

30 VB 32 32 0.9 0.98 0.50

31 Bayes 128 2 0.0 0.60 0.45

32 MAP 128 2 0.0 0.60 0.45

33 VB 128 2 0.0 0.60 0.45

34 Bayes 128 2 0.9 0.54 0.43

35 MAP 128 2 0.9 0.54 0.43

36 VB 128 2 0.9 0.54 0.43

37 Bayes 128 8 0.0 0.44 0.38

38 MAP 128 8 0.0 0.44 0.38

39 VB 128 8 0.0 0.44 0.38

40 Bayes 128 8 0.9 0.67 0.47

41 MAP 128 8 0.9 0.68 0.47

42 VB 128 8 0.9 0.69 0.47

43 Bayes 128 32 0.0 0.88 0.50

44 MAP 128 32 0.0 1.10 0.51

45 VB 128 32 0.0 1.49 0.52

46 Bayes 128 32 0.9 0.50 0.37

47 MAP 128 32 0.9 0.54 0.38

48 VB 128 32 0.9 0.61 0.38

49 Bayes 128 128 0.0 0.53 0.42

50 MAP 128 128 0.0 0.76 0.44

51 VB 128 128 0.0 2.20 0.47

52 Bayes 128 128 0.9 0.35 0.33

53 MAP 128 128 0.9 0.44 0.33

54 VB 128 128 0.9 0.90 0.35

55 Bayes 512 2 0.0 0.64 0.47

56 MAP 512 2 0.0 0.64 0.47

57 VB 512 2 0.0 0.65 0.47

58 Bayes 512 2 0.9 0.70 0.50
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59 MAP 512 2 0.9 0.70 0.50

60 VB 512 2 0.9 0.70 0.50

61 Bayes 512 8 0.0 0.50 0.41

62 MAP 512 8 0.0 0.50 0.41

63 VB 512 8 0.0 0.50 0.41

64 Bayes 512 8 0.9 0.47 0.39

65 MAP 512 8 0.9 0.47 0.39

66 VB 512 8 0.9 0.47 0.39

67 Bayes 512 32 0.0 0.42 0.37

68 MAP 512 32 0.0 0.42 0.37

69 VB 512 32 0.0 0.44 0.37

70 Bayes 512 32 0.9 0.37 0.35

71 MAP 512 32 0.9 0.37 0.35

72 VB 512 32 0.9 0.38 0.36

73 Bayes 512 128 0.0 0.41 0.36

74 MAP 512 128 0.0 0.61 0.39

75 VB 512 128 0.0 1.02 0.39

76 Bayes 512 128 0.9 0.67 0.42

77 MAP 512 128 0.9 0.90 0.45

78 VB 512 128 0.9 1.22 0.45

mae

1 0.51

2 0.50

3 0.51

4 0.39

5 0.39

6 0.37

7 0.43

8 0.44

9 0.41

10 0.57

11 0.58

12 0.59

13 0.46

14 0.46

15 0.46

16 0.43

17 0.43

18 0.42

19 0.54

20 0.54

21 0.55

22 0.49

23 0.49
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24 0.48

25 0.40

26 0.36

27 0.35

28 0.35

29 0.34

30 0.31

31 0.42

32 0.42

33 0.42

34 0.37

35 0.37

36 0.37

37 0.29

38 0.29

39 0.28

40 0.38

41 0.38

42 0.37

43 0.32

44 0.32

45 0.31

46 0.24

47 0.23

48 0.21

49 0.35

50 0.26

51 0.24

52 0.22

53 0.17

54 0.15

55 0.42

56 0.42

57 0.42

58 0.49

59 0.49

60 0.49

61 0.33

62 0.33

63 0.33

64 0.32

65 0.32

66 0.32

67 0.23
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68 0.23

69 0.23

70 0.24

71 0.24

72 0.23

73 0.20

74 0.19

75 0.18

76 0.24

77 0.25

78 0.24

Do I need something afterward here?

Appendix B: R Session Information

R version 3.5.0 (2018-04-23)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: macOS High Sierra 10.13.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils

[5] datasets methods base

other attached packages:

[1] tufte_0.4 rstan_2.18.1

[3] StanHeaders_2.18.0 MASS_7.3-49

[5] magrittr_1.5 kableExtra_1.1.0

[7] knitr_1.20 ggplot2_3.1.0

[9] rmarkdown_1.10

loaded via a namespace (and not attached):

[1] tinytex_0.5 xfun_0.1

[3] tidyselect_0.2.4 purrr_0.2.5

[5] colorspace_1.3-2 htmltools_0.3.6

[7] stats4_3.5.0 viridisLite_0.3.0

[9] loo_2.0.0 yaml_2.2.0
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[11] base64enc_0.1-3 rlang_0.2.1

[13] pkgbuild_1.0.2 pillar_1.2.3

[15] glue_1.2.0 withr_2.1.2

[17] bindrcpp_0.2.2 matrixStats_0.54.0

[19] bindr_0.1.1 plyr_1.8.4

[21] stringr_1.3.1 munsell_0.4.3

[23] gtable_0.2.0 rvest_0.3.3

[25] codetools_0.2-15 evaluate_0.10.1

[27] labeling_0.3 inline_0.3.15

[29] callr_3.0.0 ps_1.2.0

[31] parallel_3.5.0 highr_0.6

[33] Rcpp_0.12.18 readr_1.3.1

[35] scales_0.5.0 backports_1.1.2

[37] webshot_0.5.1 gridExtra_2.3

[39] hms_0.4.2 digest_0.6.15

[41] stringi_1.2.2 processx_3.2.0

[43] dplyr_0.7.6 grid_3.5.0

[45] rprojroot_1.3-2 cli_1.0.0

[47] tools_3.5.0 lazyeval_0.2.1

[49] tibble_1.4.2 crayon_1.3.4

[51] pkgconfig_2.0.2 xml2_1.2.0

[53] prettyunits_1.0.2 assertthat_0.2.0

[55] httr_1.4.0 rstudioapi_0.7

[57] R6_2.2.2 compiler_3.5.0
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