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Summary

Stochastic epidemic models (SEMs) describe the transmission dynamics of infectious diseases. These models
are often represented as density dependent Markov jump processes (MJPs), which have systems of ordinary
differential equations as functional limits (as the population size tends to infinity). The canonical example of
a SEM is the susceptible-infected-recovered (SIR) model for a closed and homogeneously mixing population.
This model, presented above, is so called because an epidemic is represented in terms of the disease histories
of individuals as they stochastically transition between susceptible, infected, and recovered states (model
compartments). In this model, per-contact infectivity rate is given by β, so with S susceptibles and I infecteds
the rate at which a new infection occurs is βSI. Similarly, each infected (and hence infectious) individual
recovers with rate µ, and thus the rate at which a recovery occurs is given by µI. A loose explanation for
what we mean by density dependent in characterizing the MJP is that the dynamics of the process are driven
by the fraction of the population in each compartment (i.e., we can equivalently represent the model in terms
of concentrations and maintain the dynamics).

Let X = (S, I,R) be the vector of SIR compartment counts, N = (NSI , NIR be the counting process for the
cumulative numbers of infection and recovery events, and φ(t,X) = (βSI, µI) be the vector of infection and
recovery rates for the SIR model. It will be necessary in working with incidence data to reparameterize the
compartment counts, and hence the vector of rates, φ, in terms of the counting process with respect to the
initial compartment counts X0 = (S0, I0, R0). Let

A =
(
−1 1 0
0 −1 1

)
and note that we can express the compartment concentrations at time t in terms of the initial compartment
counts and the cumulative numbers of infections and recoveries using the relation, X(t) = X(0) +A′N(t).
Thus, we can write the rates, φ, as

φ(t,N) =
(
β(S0 −NSI)(I0 +NSI −NIR)

µ(I0 +NSI −NIR)

)
.

In the infinite population limit, the counting process for the numbers of infections and recoveries evolves
according to the deterministic path obtained by integrating the following system of ODEs:

dN(t)
dt = φ(t,N), N0 = (0, 0), X0 = (S0, I0, R0).

Clearly, the dynamics of the limiting ODE do not reflect the stochastic aspects of the time-evolution of the
MJP. However, in the large population limit, it is possible to approximate the transition density of the MJP
with the following Ito diffusion:

dN(t) = φ(t,N)dt+
√

Φ(t,N)dW (t), s.t., N(0) = 0, X0 = (S0, I0, R0).

where Φ(t,N) = diag(φ(t,N)), and W (t) is a 2-dimensional (as we have two elementary transition events,
infections and recoveries) standard Brownian motion.

Since the counting process N is positive and monotonically increasing, it will be advantageous to work with the
log-transformed SDE for the log-transformed process, Z = (ZSI , ZIR) = (log(NSI), log(NIR)). However, we
should proceed with caution as there is an obvious problem with the initial condition for N0, as log(0) = −∞.
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We can resolve this by setting N0 = (1, 1) and “borrowing” events from X0 in the following way: Note
that X(t) = X(0) +A′N(t) = X(0) +A′(N(t)− 1 + 1) = (X(0)−A′1) +A′(N(t) + 1) for all t. Thus, an
equivalent set of initial conditions for the SDE is given by N0 = (1, 1), X0 = (S0, I0, R0)−A′1 ≡ X̃0, as long
as X̃0 ≥ 0. In our context, this is not an unreasonable condition as it implies, for example, that there are not
more infection events than there are initial susceptibles.

By Ito’s lemma the SDE for the log-transformed process, Z, subject to initial conditions Z0 = (0, 0), X0 = X̃0,
is given by

dZ(t) =
[
diag (exp(−Z(t)))− 1

2diag (exp(−2Z(t)))
]
φ(t, exp(Z(t)))+diag (exp(−Z(t)))

√
Φ(t, exp(Z(t)))dW (t).

The LNA is derived by Taylor expanding the drift and diffusion terms in the above SDE about the deterministic
limit of the MJP. The resulting approximation decomposes the Ito SDE into a non-linear deterministic drift
and a linear SDE for the fluctuations about the drift. This linear SDE has an analytic solution that is given
by a multivariate Gaussian, the moments of which are obtained by solving a coupled, non-autonomous system
of ODEs. The LNA transition density over the interval [t`−1, t`] thus takes the form,

Z(t`)|Z(t`−1) = η(t`) + m (Z(t`−1)− η(t`−1)) + ε`, ε` ∼ N(0,Σ(t`)),

where

• η(t`) is the solution to dη(t)
dt =

[
diag

(
e−η(t))− 1

2 diag
(
e−2η(t))]Φ (eη(t)) ≡ ξ(η(t)).

• m(Z(t`−1)− η(t`−1)) is the solution to dm(t)
dt = F(t)m(t), where F(t) =

(
∂ξ(Z(t))
∂Z(t)

) ∣∣∣
η(t)

.

• Σ(t) is the solution to dΣ(t)
dt = F(t)Σ(t) + Σ(t)F(t)′ + diag

(
e−η(t))Φ (η(t)) diag

(
e−η(t)).

• The above ODEs are subject to the initial conditions: X(t`−1) = x0−A′1 +A′ exp(Z(t`−1)), η(t`−1) =
0, m(t`−1) = 0 ( =⇒ m(t`) = 0), and Σ(t`−1) = 0.

In practice, we will use a non-centered parameterization for the LNA representation of the latent epidemic
process in which we map a vector of independent Gaussian draws, Nraw

i.i.d.∼ N(0, 1), deterministically to a
latent LNA path by noting that Z(t) L= η(t`) + Σ(t`)Nraw(t`). Furthermore, we reset the initial conditions for
the compartment volumes to reflect the cumulative numbers of infections and recoveries up to the beginning of
each observation interval, and reset the counting process for the infections and recoveries. The LNA moments
for the log transformed process for the next interval are then computed, and we obtain positive increments in
the numbers of infections and recoveries by exponentiating the log-LNA values that were obtained via the
deterministic mapping.

Note that the latent LNA process is Markov. Thus, the observed data likelihood, conditional on a latent
LNA path, decomposes into a product of emission probabilities, which in the SIR example in this post is a
product of negative binomial probabilities.
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