
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2013

Modified half-edge data structure and its
applications to 3D mesh generation for complex
tube networks.
Richard Paris
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted
for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository.
This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

Recommended Citation
Paris, Richard, "Modified half-edge data structure and its applications to 3D mesh generation for complex tube networks." (2013).
Electronic Theses and Dissertations. Paper 1094.
https://doi.org/10.18297/etd/1094

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F1094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1094
mailto:thinkir@louisville.edu

Modified Half-Edge Data Structure and Its Applications to 3D
Mesh Generation for Complex Tube Networks

By

Richard Paris
B.S., University of Louisville, 2012

A Thesis
Submitted to the Faculty of the

University of Louisville
J. B. Speed School of Engineering

as Partial Fulfillment of the Requirements
for the Professional Degree

MASTER OF ENGINEERING

Department of Computer Engineering

May 2013

2

iii

Modified Half-Edge Data Structure and Its Applications to 3D
Mesh Generation for Complex Tube Networks

Submitted by:
Richard Paris

A Thesis Approved On

(Date)

by the Following Reading and Examination Committee:

Dr. Dar-jen Chang, Thesis Director

Dr. Ming Ouyang

Dr. John Pani

iv

I. ABSTRACT

Modified Half-Edge Data Structure and Its Applications to 3D

Mesh Generation for Complex Tube Networks

Richard Paris

May 2013

 In computer graphics 3D mesh generation is an important

topic, it is required for a vast number of applications. While

there are currently solutions available for the generation of

meshes, there is not one that suits our application well that is

written in C#, for this reason a C# implementation of the half-

edge data structure as well as a C# implementation of the mesh

generation algorithms is needed. This document will discuss in

detail the method by which the algorithms are implemented, the

improvements that are made on the half-edge data structure, and

the new features that have been added to the new application.

Further this document will evaluate the performance improvement

made by the improvements mentioned.

v

II. TABLE OF CONTENTS

ABSTRACT... IV

TABLE OF CONTENTS... V

LIST OF FIGURES... VII

LIST OF TABLES... VIII

LIST OF ALGORITHMS... IX

I. INTRODUCTION .. 1

II. 3D MODELING APPLICATIONS AND REPRESENTATIONS 6

A. MEDICAL TUBE STRUCTURES ... 8

B. PROCEDURALLY GENERATED LEVELS .. 9

C. PHYSICS SIMULATIONS .. 12

III. OVERVIEW OF TRIANGULAR MESHES 15

A. TRIANGULAR MESH DATA STRUCTURES .. 17

B. HALF EDGE DATA STRUCTURE ... 20

C. METRICS OF HALF EDGE DATA STRUCTURE 24

IV. HALF EDGE DATA STRUCTURE IMPROVEMENTS 28

A. HASH TABLE FOR UNLINKED HALF EDGES 28

1. Subdivision .. 29

2. Mesh Conversion .. 32

3. Boundary Tracing ... 33

vi

B. INCLUSION OF NON-ORIENTABLE SURFACES 34

C. MESH MANIPULATION AND SIMPLIFICATION 35

D. CIRCULATOR ... 37

V. 3D TUBE NETWORKS MESH GENERATION 41

A. ALGORITHM .. 41

1. Create Branch .. 44

2. Create Node .. 46

B. IMPLEMENTATION .. 46

1. Debugging .. 47

C. REDUCTION OF TWISTING .. 47

D. IMPROVED CREATION OF TWO-BRANCH PIPES 48

E. CONVEX HULL .. 51

VI. RESULTS .. 53

A. SUBDIVISION .. 54

B. TUBE CREATION .. 55

C. NON-ORIENTABLE SURFACES .. 56

D. EVALUATION OF PROPOSED DATA STRUCTURE 59

VII. RECOMMENDATIONS .. 63

A. CONVEX HULL CREATION ... 63

B. TEXTURE ASSIGNMENT .. 63

LIST OF REFERENCES... 64

CURRICULUM VITAE... 65

vii

III. LIST OF FIGURES

Figure 1 Ear Clipping... 17

Figure 2 Winged-edge data structure........................... 19

Figure 3 Half-Edge data structure............................. 21

Figure 4 Triangular Orientation............................... 22

Figure 5 Loop Subdivision..................................... 30

Figure 6 Non-orientable Triangular Orientation................ 35

Figure 7 Edge Collapse.. 36

Figure 8 Sample Branch Structure.............................. 44

Figure 9 Twisted Tube... 48

Figure 10 Modified Two-Branch Method 1........................ 49

Figure 11 Modified Two-Branch Method 2........................ 50

Figure 12 Adding additional points to the convex hull......... 51

Figure 13 Random Oriented Plane............................... 57

Figure 14 Plane Culled CCW.................................... 57

Figure 15 Plane Subdivided.................................... 58

Figure 16 Plane Subdivided and Culled......................... 58

Figure 17 Mobius strip.. 58

Figure 18 Subdivided Mobius strip............................. 58

Figure 19 Klein bottle.. 59

Figure 20 Subdivided Klein bottle............................. 59

viii

IV. LIST OF TABLES

Table 1 Post-Subdivision Half-Edge Links...................... 32

Table 2 Comparison of Mesh Creation Times..................... 54

Table 3 Comparison of Subdivision Times....................... 54

Table 4 Comparison of Subdivision Times....................... 55

Table 5 Comparison of Tube Creation Times..................... 56

ix

V. LIST OF ALGORITHMS

Algorithm 1 Collision Detection............................... 11

Algorithm 2 Ear Clipping...................................... 17

Algorithm 3 Adjacent Face Circulator.......................... 23

Algorithm 4 Neighboring Vertex Circulator..................... 23

Algorithm 5 Improved Mesh Conversion.......................... 33

Algorithm 6 Improved Adjacent Face Cicrulator................. 39

Algorithm 7 Improved Neighboring Vertex Circulator............ 40

Algorithm 8 Tube Conversion................................... 42

Algorithm 9 Branch Conversion................................. 45

1

I. INTRODUCTION

Moore’s law states that computational power will move

forward at an exponential rate, the problem is that

currently it is moving at a linear rate; because of this

limitation there is a need to implement efficient data

structures in the effort of continuing the pace of moving

computing ability forward at that exponential rate. One

such area that continues to grow is 3D computer graphics,

particularly the representation of 3D models in a virtual

environment. Furthermore, the complexity of accurate 3D

models results in a tremendous need of storage, some

accurate models result in up to 1 billion polygons (Levoy,

2011).

Currently the predominant data structure being used to

represent these 3D models is the half-edge data structure.

While there are others (such as the quad-edge and doubly

linked face list data structures)(Kettner, 2012), many of

the commercial and open source geometry libraries use the

half-edge data structure as the primary method of storage

and analysis (Leadwerks, 2006). The half-edge data

structure is an “edge-centered” structure; it is primarily

concerned with storing links between half-edges as the main

method of traversing the mesh. Each half-edge must at least

2

contain a pointer to its opposite half-edge as well as the

next half-edge in the contained face.

The major goal of this paper is to improve the current

application, through various means, that is currently being

used to visualize a 3D tube structure. Currently the main

use of the application is that of medical splines created

from medical imaging, but can be expanded to many fields

such as game development, physics simulations of

structures, etc. The application being replaced is

developed using CGAL, a computational geometry library with

a built in half-edge data structure, and open-inventor, a

3D graphics API for visualization.

This paper will address three goals set forth for the

modification of the half-edge data structure in general and

the existing application that is in use today. First and

foremost, the data structure being used is an

implementation that was developed in C++. This

implementation makes use of template classes as well as

many other programming concepts that are not easily read

and usable. Because of this there is a push to migrate the

application to C#, which allows for a more fluid

implementation. A C# implementation also allows for the use

of free memory management, enumerators, and other

3

techniques that will be discussed in chapter V. The second

area of improvement that will be undertaken is to implement

support for non-orientable surfaces; the current data

structure being used does not support this, and while not

necessary for many applications, can be useful in certain

instances. Finally the most important aspect of

improvement of the data structure is the inclusion of a

hash table of unlinked half-edges. The key of this hash

table is the connected vertices, allowing for O(1) time

access to a half edge provided it currently has no

opposite. This will allow for reduced computational time

for many of the algorithms necessary for completion of the

process.

These three aspects are the driving force of this

paper, which proposes changes to be made to the current

implementation and the current data structure that will

address those areas, as well as improve upon other minor

issues. As stated computational power is a limitation on

this system that needs to be addressed, especially

computational time as it relates to this application. One

point of emphasis was that the new implementation needed to

complete the process more quickly and efficiently without

sacrificing flexibility or usability. The proposed changes

4

to the current method should improve flexibility of the

application, reduce the time that is required for the

current process and finally to allow for an application

that is modifiable to the needs of the user.

This paper will first address the motivation of mesh

generation and its applications, focusing on the impact

that can be had from 3D tube mesh generation. These

motivations include medical imaging and model

reconstruction, virtual environments and procedural level

generation, and finite element analysis as it pertains to

mesh simulation. Following will be a literature review and

overview of current triangular meshes, particularly the

data structures being used, and the methods by which one

can evaluate the efficacy of an implementation of the half-

edge data structure.

Chapter IV will contain a discussion of the various

improvements and modifications that will be made to the

current data structure, as well as make note of why these

improvements are valuable. This chapter will discuss the

implementation of the hash table mentioned previously, the

method by which non-orientable surfaces are supported, and

some of the minor improvements made to usability and

flexibility of the data structure implementation. Chapter V

5

will discuss the algorithm that is being used in the

application giving more detail into how the mesh is

generated and the current techniques being employed to

improve upon the quality of the meshes. The generation of

the tube mesh has two major parts that will be discussed,

that is the creation of a branch and of a node.

In the next chapter, results of the improvements will

be discussed; in this section certain time and complexity

improvements will be introduced, and the data structure

will be evaluated using standard criteria. Finally the

paper will go into recommendations for future work of this

project, including continued look into special cases for

the application, and texture assignment for improved

visualization.

6

II. 3D Modeling Applications and Representations

 3D modeling is the field of representing 3D solids

using mathematical models. Specifically it is a collection

of 2D or 3D objects in a 3D space that are connected using

various data structures. Typically the models represent a

real-world object, but this does not have to be the case.

Representing real-world objects allows for one to perform

analysis, simulations, and many other applications on the

object. Using objects that are not from the real-world,

allows for one tor represent virtual and constructed

environments that can be used in games, movies, television,

and many other areas of entertainment. 3D modeling has a

number of specific applications that will be discussed.

Current 3D modeling techniques are being used in the

medical field to represent any number of biological parts.

One can also develop levels procedurally using

computational 3D modeling. Finally 3D modeling allows for

one to perform physics simulations on the 3D models.

 Currently there are two main techniques to represent a

3D solid; these are boundary representation and

constructive solid geometry (CSG). CSG is a referred to as

“intelligent geometry” (Leadwerks, 2006), it uses a number

of simple solids in conjunction with Boolean operations to

7

form a complex solid. These simple solids are convex

objects, meaning that there are created using only

intersecting coplanar faces. There are three Boolean

operations that are used to allow for this technique to

have full representation, they are the intersection, union,

and set difference. These two aspects allow for complex

solids to be created. The other technique is that of

boundary representation; boundary representation is “more

explicit” (Marshall, 1997) than CSG and stores information

about the solids faces, edges, and vertices in order to

completely represent the solid. The benefits of this

method are that surface information is more readily

available; it allows for much simpler representation, it is

effectively a combination of faces rather than a

combination of solids. Additionally the information of

neighboring vertices, faces, or edges are readily

available. Finally boundary representation is useful for

determining local normal at each vertex, and quickly

transforming into a format usable by current graphics

cards. One method of boundary representation is the half-

edge data structure; the half-edge data structure stores

information mainly about the faces, vertices, and edges of

a solid; however it mainly uses the half-edge information

for traversal of the solid. Adjoining faces are shown as

8

adjoining using a combination of linked half-edges, for

each pair of half-edges the faces that they belong to are

also now adjoining. This paper and application will be

focused on boundary edge representation, specifically the

half-edge data structure.

A. Medical Tube Structures

One primary application of 3D modeling is the

representation of important medical images. Currently

medical imaging consists of taking a series of 2D images at

various depths so that a medical professional can examine

them for research, diagnosis, or other clinical reasons.

These images can be used to recreate a 3D representation of

the volume being imaged. The purpose of this procedure is

to allow the examiner to have a better model to study, one

that can be examined as a 3D model.

Various biological objects can be represented a series

of interconnected tubes, the nervous system, the

cardiovascular system, even the skeletal system is a series

of bones each of which is effectively a simple tube

connected by tendons. It would be of value to have a way

to analyze these tube systems. The proposed application

will allow for that. Given a directed graph that can be

9

taken from the medical images, this application can create

a triangular model that approximates the biological object.

Once this model is generated, one can perform simulations,

programmatically classify the model based on previous data,

or compare the model to a previous model to detect changes

and anomalies.

Another problem with medical data is that it is so

large; one medical doctor estimated the amount of data to

be as high as 150 exabytes (Hughes, 2011), this is because

each medical 3D model is hundreds of images stored

together. This makes storage costly and causes medical data

transfer to be a big endeavor. Storing data as a directed

graph would reduce the size of a file by as many as four

orders of magnitude. Further, a program that could quickly

represent that directed graph as tube structure would allow

for medical data to be transferred along with the program

significantly reducing the amount of data to be

transferred.

B. Procedurally Generated Levels

Another application of 3D modeling is the ability to

create and generate levels procedurally using either

predefined data along with an algorithm, or allowing for

10

random variation to create unique levels for each user and

upon each use. The current predominant method of creating

a level in a video game is to have a team create every

aspect of a level. One person may create a skeleton of the

level, meaning they develop the basic structure of the

level, and then a second member will be responsible for

texturing and adding detail to the level. This means that

every level takes a significant amount of time to create,

as well as a significant investment. The second part of

this method could be replaced by an intelligent algorithm

capable of creating realistic levels from a skeleton; this

is one of the possible applications of 3D modeling.

The proposed application will be able to take a

skeleton, in this case a directed 3D graph, and

procedurally create any tube-like structure. For example a

complex cave system could be created by setting up the

skeleton of a tunnel system and applying the algorithm

presented in chapter V to create the next step in

development of the mesh, the high-level detail. The

benefit of this algorithm is that it attempts to mimic how

the tube system would come together in nature. The

benefits of creating the geometry procedurally are more

than just the ability to rapidly develop these structures.

11

The other benefits arise from being able to store these

structures in a much compressed form, i.e. the original

directed graph.

After applying the initial tube creation algorithm,

the structure must be subdivided a number of times in order

to give it the natural appearance, this subdivision process

is computationally intensive, this means that the data

structure must be efficient so that the subdivision

algorithm can run in an appropriate timeframe. This is one

of the goals of the paper, to implement this efficient data

structure that will allow for the subdivision to be

efficient.

There are two other results that arise from the

application of subdivision: first the intermediate steps

can act as a simplified mesh for collision detection. Mesh

collision detection works by the following algorithm

(algorithm “ALGO 1”).

foreach (Polygon p1 in mesh.polygons)
{
 foreach (Polygon p2 in mesh.polygons)
 {
 if (p1 == p2) continue;
 if (p1.intersects(p2))
 {
 //collision detected
 }
 }
}

Algorithm 1 Collision Detection

12

This shows that collision detection is on the order of

n-squared, thus very inefficient, a simplified mesh allows

for collision detection to be done on a mesh with very few

polygons to same time without being noticeable to the user.

The second result of the subdivision is that it adds not

just more detail, but the ability to randomly generate

detail. Some structures like blood vessels are typically

smooth, but there are tube structures that have detail in

them, this detail can be modeled as noise in the mesh,

resulting in detail that does not need to be introduced by

the designer.

C. Physics Simulations

A great deal of research is done through the use of

simulation of dynamical systems, this is because it is much

too difficult to recreate many systems and conditions or it

is done to forecast potential outcomes based on future

occurrences. Forecasting requires extremely accurate

models and data which can be provided for through the use

of 3D mesh generation. Currently physics simulations on

physical objects are done using either rigid body or soft

body dynamics, and the interactions are performed on

primitives such as triangles, cubes, spheres, etc.

13

These simulations still can take a great deal of time

and computing power which is why it becomes important to

have efficient mesh data structures. The process of

simulating interactions on a group of discrete primitives

is called finite element analysis (FEA). FEA involves

applying forces, torques, or heat on a system of discrete

objects. Then each of those objects acts upon its local

neighbors to determine what was the effect on itself (this

could be change in position, velocity, acceleration,

temperature, rotation, or any physical property). This is

done iteratively to each element in the mesh, calculating

the stimuli on itself at that time increment and imparting

stimuli on its neighbors for the next time increment.

Typically FEA then warrants some analysis, for example an

FEA on an engine will result in many stresses, strains, and

temperatures, at each stage an analysis should be performed

to determine if the part will fail at that point.

FEA is used in nearly every high order simulation, but

requires a detailed mesh for the analysis. Currently the

mesh can be developed using an artist, a 3D scanner, or a

software package such as AutoCAD to create the model from

drawings. In the event of large structures such as caves,

sewers, or transit tunnels this can be very difficult to

14

achieve. The same is true for small systems that cannot be

scanned such as the nervous or cardiovascular system.

15

III. Overview of Triangular meshes

 A mesh is a set of polygons that are linked by common

edges and vertices; which together form a 3D model

specifically a polyhedral object. For the sake of

simplicity each polygon is convex to simplify various

operations. Meshes are used for representation to reduce

processing time. Individual polygons require processing to

be done on each vertex on each polygon, but linking these

polygons together allows for processing to be done on many

vertices that represent the same point at the same time.

There are many types of meshes that can be used in the

representation of a 3D model; one can use a triangular only

mesh, a mesh that uses quadrilaterals along with triangles,

or any other combination of polygons. However, the

triangular mesh is the most commonly used mesh. A

triangular mesh is a polygonal mesh that uses only

triangles to represent the surface.

The reasoning for using triangular meshes is that any

model or object can be broken down into a set of triangles,

but the same cannot be said for quadrilaterals and other

higher degree polygons. The reason that every model can be

decomposed into a set of triangles is the fact that every

16

polygon can be broken down into triangles; however

triangles cannot be broken down into anything but other

triangles without adding additional vertices and increasing

computational time. Further the triangle is always

guaranteed to exist on a single plane allowing for all

calculations for shading, texture mapping, etc. to be done

using only linear interpolation between the three points on

the triangle. One should note that while the data structure

can force the higher degree polygons to be on a single

plane, in the event of mesh modification resulting in

vertex movement, this restriction may be violated unless

checked after every operation; this can result in

significantly more operations. Figure 1 (Kajak, 2011) shows

a polygon that has been reduced to a set of triangles using

the ear clipping method. Algorithm 2 (Kajak, 2011) shows

the procedural method by which the polygon can be reduced

into a set of triangles. The algorithm will only reduce the

polygon into a list of triangles; a more advanced algorithm

is used to maintain a mesh structure. This algorithm is

given to explain a simple method of triangular reduction.

17

List<Triangle> ear_clipping(Polygon p)
{
 List<Triangle> T;
 while (P.vertices > 3)
 {
 foreach (Vertex v in P.vertices)
 {
 //test to see if the polygon excluding v contains v
 if (!InNewPolygon(v, P))
 {
 T.add(new Triangle(v, v.next, v.prev));
 link(v.next, v.prev); //remove vertex v
 //from polygon p
 break;
 }
 }
 }
 T.add(new triangle(P[0], P[0].Next, P[0].Prev);
 return T;
}

Algorithm 2 Ear Clipping

Figure 1 Ear Clipping

A. Triangular Mesh Data Structures

A triangular mesh data structure stores more

information that just a list of triangles. The data

structure also stores information about links among

18

adjacent triangles and the method by which this is done

classifies the type of data structure that is being used.

This extra information must be stored in order to allow for

various operations to be performed on the mesh, and so that

information about the mesh can be quickly accessed in

linear or constant time. There are many triangular mesh

data structures that are currently being employed. The

most commonly used data structures are the face-vertex,

winged-edge, and half-edge.

The face-vertex data structure is the simplest of the

data structures and is typically used by graphics

processors because the processor does not need information

about linked edges or linked faces. The face-vertex data

structure is simply a list of triangles containing a

pointer to the three vertices that make up the triangle.

This data structure requires 3 pointers per face.

The winged-edge data structure is an edge based data

structure meaning that the links between edges are

explicitly defined and the links between vertices are

implicitly defined. In the winged-edge data structure each

edge points to its head and tail vertices, the two incident

faces, and the four edges that are connected to each of its

vertices. Figure 2 shows the representation of the winged-

19

edge data structure. (Zorin, 2004) The winged-edge data

structure requires eight pointers per edge and one pointer

per face and vertex. Though more information can be stored

to allow for faster access times, it is unnecessary because

the other information is represented implicitly.

Figure 2 Winged-edge data structure

The half-edge data structure is one of the more

powerful data structures and will be the one used for the

purpose of this paper. It is a variant of the winged-edge

data structure and it implemented by splitting up each edge

into two and relying on half-edge traversal for many of the

operations. The benefit of the half-edge data structure is

that it allows for a consistent orientation among the

20

triangles. The other benefit of the half-edge data

structure is that there the traversals can be done without

branching, which can lead to reduced traversal time. In the

next chapter this paper will go into more detail about the

half-edge data structure.

B. Half Edge Data Structure

The half-edge data structure is based on the winged-

edge data structure, meaning that it is also an edge-based

data structure. This also means that it is very similar to

the wing-edged data structure in its representation; each

edge stores a reference to its opposite (some data

structures take advantage of spatial locality and assume

that if ‘i’ is the index of one half-edge, its opposite is

‘i+i%2’), the two half-edges connected to itself, the two

vertices that it touches, and the face that it helps make

up. Each vertex stores a reference to a single half-edge

that points to the vertex; for ease of circulation if there

is an incident half-edge that is a boundary edge that half-

edge is used. Finally each face stores any half-edge that

borders it. Every other necessary access is done in

constant time, and traversals done in linear time. Figure

3 (Zorin, 2004) shows the abstract representation of the

21

half-edge data structure, including all the references each

edge has. Not all of these references are necessary and can

be represented implicitly; for example the tail vertex does

not need to be explicitly represented. It can be accessed

using ‘e.opposite.head’; one can make use of these implicit

representations to for the half-edge data structure in the

same amount of memory as the winged-edge data structure.

Figure 3 Half-Edge data structure

The half-edge data structure relies on the fact that

each edge is bounded by exactly two faces and this allows

the edge to be separated into two half-edges that are

oriented in opposite direction. As stated this allows for a

consistent orientation of the triangles, either clockwise

22

or counter clockwise. The consistent orientation is

beneficial in that for orientable surfaces it lets us know

immediately which side is the visible side, and it causes

the normal to always be oriented outward, given that the

correct coordinate system is being used. The reason that

the half-edge data structure has a consistent orientation

is shown in figure 4 in which both triangles are oriented

in a clockwise direction. As can be seen from the figure,

when both triangles are oriented in the same direction, the

adjacent half-edges are in opposite direction.

Figure 4 Triangular Orientation

It was also noted that the traversal algorithms no

longer require a conditional to determine in which

direction the circulator must go. The circulator always

knows which way to go because each triangle has the same

23

orientation as the last; so circulation can be performed

according to algorithms 3 and 4.

List<Face> adjacent_faces(Vertex v)
{
 List<Face> F;
 HalfEdge e = v.halfedge;
 //e must point to v
 do {
 F.add(e.face);
 e = e.next.opposite;
 } while (e != v.halfedge)
 return F;
}

Algorithm 3 Adjacent Face Circulator

List<Vertex> neighbor_vertices(Vertex v)
{
 List<Vertex> V;
 HalfEdge e = v.halfedge;
 //e must point to v
 do {
 V.add(e.tail);
 e = e.next.opposite;
 } while (e != v.halfedge)
 return V;
}

Algorithm 4 Neighboring Vertex Circulator

The half-edge data structure contains a number of classes

that are necessary to perform all necessary accesses, and

calculations. The typical half-edge data structure has the

following list of classes.

 Mesh: The main class that contains all other classes,

has a list of half-edges, vertices, and if they

contain pertinent data, a list of faces.

 Face: Has a reference to a general half-edge, and any

pertinent data (e.g. color, normal, mass).

24

 Vertex: Has a reference to a half-edge that points to

the vertex, and any pertinent data (e.g. color,

location, normal).

 Half-Edge: Contains the references stated earlier in

the paper. This is the most important class, and is

used the most.

C. Metrics of Half Edge Data Structure

There are five metrics of a half-edge data structure

that should be considered during implementation (Kobbelt).

They are access, modification, operations,

parameterization, and I/O. In this chapter each metric

will be discussed and detailed and will make note of how

the two major libraries currently perform in these metrics.

Later in chapter VI this paper will discuss how well the

proposed implementation performs per these metrics, and

specifically what is being done to address each metric.

The first metric is access, meaning how quickly the

program can access the vertices, edges, and faces. One

should also measure how convenient it is to circulate

through neighboring vertices, incident faces, and determine

boundary edges of a face. Both libraries perform similarly

in this respect; they each have iterators and handles that

25

are used in for loops to access each element. This

implementation provides for an easy to use interface for

enumeration. They also provide a circulator that does

traversal without the need for knowledge of the traversal

algorithms. While the circulators and iterators can be

easy to use, the move to C# and its enumerators allow for a

more abstracted implementation.

The next metric is modification; ideally a mesh should

be modifiable by the user without much trouble. One should

be able to add or remove vertices and faces quickly without

compromising the integrity of the structure. Any

implementation must take this into account. Both libraries

have methods to add and remove faces and vertices without

ruining the mesh. These libraries are sufficient at this

job, so there is no need to improve upon this metric; it

just needs to be at least as efficient in this endeavor.

The half-edge data structure has certain operations

that need to be performed for reasons such as analysis,

simulation, or simplification. This means that the

implementation should provide methods for completing these

operations efficiently. Examples of these operations

include ‘half-edge collapse’ for simplification, face/edge

splits for subdivision, or specific to this application a

26

method to create a convex hull around a set of points.

These operations are provided for by the current libraries,

but given the special cases of the application it may be

possible to increase efficiency of the calculations.

 An important consideration in our application is

parameterization which allows for the user to add or remove

information from the various objects in the data structure.

Ideally faces and vertices should allow for data to be

added and removed at runtime. This data should not be

limited to a single type though; it should allow for a

reference to any object to be placed as a property of the

face or vertex. Both libraries have implementations that

are general and efficient in their own right, but may be

more robust than is necessary for the application.

 Finally this structure should be easily converted to

and from standard file formats. One file format that is

used is the .off file format, which stores the data in a

way similar to the face-vertex structure mentioned

previously. It is a list of vertices containing their

information, and a list of faces that contains its own

information as well as indices corresponding to the

vertices that make up that face. This is the file type

that will be used for the purposes of this paper. The

27

current libraries do again succeed in the metric, they both

are able to export the data and import the data correctly.

Thus the improvements will have to be due to an improvement

in the time required for conversions.

28

IV. Half Edge Data Structure Improvements

The current implementation of the half-edge data

structure has various areas that can be improved upon such

as the method linking of the half-edges or the lack of

support for non-orientable surfaces. There is also an

absence of important methods for simplification,

manipulation, and access. This chapter will discuss how

each of the areas is addressed and improved upon.

A. Hash Table for Unlinked Half Edges

Currently when a face is added its opposite is found

by iterating through every previous half-edge and checking

for the correct opposite. As a result the time complexity

of face insertion is linear. However this can be reduced to

constant time by using a hash table to store each unlinked

half-edge.

A hash table is an array of objects whose position is

based on the hashing value of the key. This allows for

constant time lookup of an object if the key is known. The

key value of each object in this hash table is an ordered

pair of integers which corresponds to the ids of the head

and tail vertices of the half-edge respectively. It should

29

be noted here that any half-edges opposite half-edge will

have its head and tail vertex reversed; this means that to

find the opposite half-edge of a given half-edge the key is

simply the ordered pair of ids of the tail and head

vertices respectively.

1. Subdivision

Subdivision is the recursive process of smoothing a given

mesh. This is typically done by splitting a face into some

number of newer triangles and adding some number of

vertices. The location of the new vertices is determined

using either an approximating or interpolating method. This

method may also move the already existing vertices based on

the locations of its neighbors. The current application

uses loop subdivision which splits each face into four new

faces, and each half-edge into two new half-edges.

This subdivision scheme results in each half-edge being

unlinked during the process; the old method would ignore

the half-edge opposite links until the end of the

subdivision process then go through each half-edge and

search for its opposite. This would cause the subdivision

process to run in quadratic time complexity. The addition

of the hash table reduces the time complexity to quadratic,

but it introduces a new problem into the data structure. In

30

some cases the hash table may grow to be very large,

eliminating the constant time lookup of the hash table.

This problem is mitigated by searching for half-edge links

after each face is subdivided. An alternative method of

linking is also available that does not use the hash table

for finding opposite half-edges, it makes use of the fact

that each edge is initially comprised of 2 half-edges and

then is split into 4 half-edges allowing for linking to be

done as soon as both adjacent faces are subdivided. Figure

5 below shows how this is done.

Figure 5 Loop Subdivision

31

In figure 5 the red arrows represent the already

existing half-edges; the blue arrows represent the half-

edges that are ‘children’ of existing half-edges, and the

green arrow represent completely new half-edges. In each

original triangle the ‘next’ and ‘previous’ half-edge

reference as well as the ‘opposite’ half-edge reference for

the internal half-edges (green) are set immediately

following subdivision.

Assume that the top triangle is subdivided first then

the bottom triangle, all of the ‘next’, ‘previous’, and

internal ‘opposite’ half-edge references of the top

triangle will be set, then the ‘next’, ‘previous’, and

internal ‘opposite’ half-edge references of the bottom

triangle will be set. At this point all original (red) and

child (blue) half-edges do not have references to their

opposites, instead each original (red) half-edge has a

reference to their child’s (blue) opposite. From this we

can check each of the three bounding faces to determine if

they have already been subdivided, in this example only the

two shown triangles have been subdivided so only one set of

four half-edges are ready to be paired, Table 1 shows the

how to access each of the four half-edges and its pair,

assuming the original is called e.

32

Table 1 Post-Subdivision Half-Edge Links

Half-edge 1 Half-edge 2

e e.opposite.child

e.child e.opposite

e.opposite e.child

e.opposite.child e

2. Mesh Conversion

It is necessary to convert the half-edge data

structure to and from the face-vertex structure for storage

in an off file, or to transfer the mesh to the graphics

processor. It is therefore an efficient method of

conversion is required. The conversion consists of first

placing the vertices into the mesh, then adding the faces

one by one to the mesh. Using a linear time approach for

adding faces to the mesh would result in a quadratic time

complexity of the mesh conversion.

However, this hash table allows for face insertion to

run in constant time which in turn allows for the mesh

conversion to run in linear time, a significant improvement

over the alternative. Algorithm 5 shows the pseudo-code for

improved mesh conversion.

33

for each face f to be added
 create internal halfedges of f and link them
 for each internal halfedge e
 key := (e.tail.id, e.head.id)
 if the key is in the hash table
 e.opposite := hash_table[key]
 else
 key := (e.head.id, e.tail.id)
 value:= e
 add the key-value pair to the hash table
 end
 end
end

Algorithm 5 Improved Mesh Conversion

3. Boundary Tracing

The hash table at any time keeps track of all unlinked

half-edges in the mesh and each of these half-edges is a

boundary edge of the surface. This means that enumerating

the boundary edges can be done very easily without

searching through every half-edge. Additionally testing to

see if the surface is fully closed is easily done by

testing for the number of elements in the hash table.

Using the unlinked half-edge hash table in conjunction

with the circulator allows for any hole in the object to be

found in linear time (proportional to the number of half-

edges that border the hole). This combined with the linear

time enumeration of boundary edges means that the boundary

tracing time can be reduced by a factor equal to the ratio

of boundary edges to non-boundary edges.

34

B. Inclusion of non-orientable surfaces

A non-orientable surface is one in which the two sides

of the surface are indistinguishable from each other, for

example the Mobius strip. What this means is that for a

non-orientable surface mesh it is valid to say either side

of any primitive is the outside or visible side. This

raises a problem for the half-edge data structure because

each primitive’s half-edges are oriented in a counter

clockwise direction, but in the case of a non-orientable

surface a clockwise orientation is also valid. This can be

avoided by not culling either face (counter clockwise or

clockwise) but there is still a problem with the linking of

the half-edges. Consider figure 6, a modification of figure

4, which has two adjacent triangles, one oriented

counterclockwise, one clockwise. The two adjoining half-

edges are in the same direction which results in an invalid

half-edge data structure. It is for this reason that half-

edge data structures do no support non-orientable surfaces.

By removing this restriction, and implementing the

algorithms discussed in the following sections, this

problem can be eliminated.

35

Figure 6 Non-orientable Triangular Orientation

C. Mesh Manipulation and Simplification

A simplified mesh has many benefits, in particular it

allows for faster collision detection, less memory expense,

and faster analysis. There are two ways to simplify the

mesh, the first is to use the mesh before subdivision or

processing, but in some cases the mesh does not have the

desired visual quality or it contains redundant vertices,

half-edges, or faces. The second option is to apply the

methods described below to the mesh after subdivision so

that it is simplified yet maintains its shape, and

smoothness.

The new half-edge data structure now allows more a

great deal more in the way of mesh manipulation. This

36

application requires the ability to dynamically add and

remove faces and vertices to the mesh. The previous

implementation was not capable of these dynamic removals,

and the dynamic addition of a face was much too slow.

As mentioned previously, the time complexity of adding

a face to the mesh is constant where it was previously

linear. This was accomplished using the hash table for

unlinked half-edges. In addition to improving the time to

add a face to the mesh the new implementation allows for a

face to be removed from them mesh. During the creation of

the branch structures it becomes necessary to remove a

number of faces from the mesh thus a reliable method to

remove faces and maintain a valid half-edge data structure

was needed. Face removal is done by releasing the half-

edges opposite of each half-edge in the face back to the

unlinked hash table. Then, if necessary, a new half-edge

is chosen for the vertices on the face. The new

implementation also includes methods to remove vertices

from the mesh, though currently it simply removes the faces

incident upon that vertex.

Figure 7 Edge Collapse

37

It is also valuable to collapse faces or half-edges in

order to simplify the mesh. A half-edge collapse is shown

in figure 7 (Widas, 1997) and involves merging the two

vertices that make up the edge. This operation results in

two degenerate triangles that are removed from the mesh,

there are also two new vertices at the same position

meaning one can be removed. Finally six half-edges can be

removed from the mesh. The half-edge collapse is valuable

when the two vertices provide very little information more

than a single vertex would. Another reason to collapse a

half-edge is if it is very short in comparison to the rest

of the object.

A second valuable method that was implemented is the

face collapse method; a face collapse is related to the

half-edge collapse because it collapses all three edges of

a triangle to the centroid of that triangle. The face

collapse results in 4 degenerate triangles (3 lines and 1

point) allowing them to be removed from the object. The

face collapse also results in removal of two vertices and

12 half-edges.

D. Circulator

There are many calculations that are based upon all

incident faces or neighboring vertices (e.g. the vertex

38

normal) and it is necessary to enumerate each of these

faces or vertices. A circulator is an interface that

allows for this, given a vertex it can find the incident

faces or neighboring vertices in linear time. It makes use

of algorithms 3 and 4 and abstracts them to an easy to use

interface.

In the C# language there is a construct called the

enumerator which allows for iteration using the ‘foreach’

loop. The enumerator interface is used to simplify

iteration over a set of objects, in this case faces or

vertices, using the following syntax.

foreach (Vertex v in Mesh.Vertices) {
 //do something to each vertex
}

The new data structure implements these enumerators

for both the incident faces, and the neighboring vertices.

This improves the usability of the data structure as well

as the readability because it more closely resembles human

speech than the typical for loop. Additionally it abstracts

the initialization and iteration away from the user

preventing errors from arising in the case that the

initialization or iteration is performed incorrectly.

As mentioned the new data structure is capable of

handling non-orientable surfaces. To accommodate these

39

surfaces, a modification had to be made to the circulators;

these modifications can be seen in algorithms 5 and 6.

Each circulator works under a similar structure to the

winged-edge circulators; specifically the modified

circulators use the vertex they are circulating about to

determine which direction to go next, rather than always

going counter clockwise as they previously did.

List<Face> adjacent_faces(Vertex v)
{
 List<Face> F;
 HalfEdge e = v.halfedge;
 //e must point to v
 do {
 F.add(e.face);
 if (e.head == v)
 e = e.next.opposite;
 else
 e = e.prev.opposite;
 } while (e != v.halfedge)
 return F;
}

Algorithm 6 Improved Adjacent Face Cicrulator

40

List<Vertex> neighbor_vertices(Vertex v)
{
 List<Vertex> V;
 HalfEdge e = v.halfedge;
 //e must point to v
 do {
 V.add(e.tail);
 if (e.head == v)
 e = e.next.opposite;
 else
 e = e.prev.opposite;
 } while (e != v.halfedge)
 return V;
}

Algorithm 7 Improved Neighboring Vertex Circulator

41

V. 3D Tube Networks Mesh Generation

A graph is a set of vertices, some of which are

connected in pairs, these connections are called edges. A

directed graph is a special type of graph in which the

pairs of connected points are ordered. The purpose of this

application is to start with a directed graph and, through

the algorithm that follows, build a 3D tube mesh that is

representative of that directed graph. This is a multistep

process that will be discussed throughout this chapter.

This chapter will also discuss in detail the implementation

of the algorithm, and how the data structure is used to

allow for the creation of the tube mesh.

A. Algorithm

The creation of a tube mesh starts first with a

conversion from the directed graph into a new structure

called a ‘tube’ each tube consists of branches, nodes, and

the directed connections between them. The tube construct

is very similar to that of a directed graph, the main

differences being that vertices of degree 3 or higher are

considered branches (the rest being nodes) and no two

branches can connect; instead they must have a node placed

between them. The algorithm to do this was provided prior

42

to the project and as such this paper will not cover it in

depth. However, it is important to know that each branch

has in-nodes and out-nodes much like a directed graph.

Algorithm 7 below shows the process by which this tube

construct is converted into a tube mesh.

mesh convert_tube(tube)
 foreach (Branch b in branches)
 convert_branch(b);

 foreach (Branch b in branches)
 foreach (Node n in b.out_nodes)
 convert_node_path(n);

 foreach (Node n in nodes)
 if (n is not converted and n has no in node)
 convert_node_path(n);

 foreach (Node n in nodes)
 if (n is not converted)
 convert_node_path(n);

convert_node_path(n)
 convert_node(n);
 if (n has no out node) return;
 if (n’s out node has been converted) return;
 n2 := n's out node;

 convert_node_path(n2);

Algorithm 8 Tube Conversion

Once the tube construct is created, the mesh

conversion process takes place. First, since no two

branches connect each one of them can be converted

individually with no interaction; this is step 1 in figure

8 and the exact process will be detailed in the next

subsection. Once each branch has been created the paths

must now be constructed between each branch. Recall that

each branch has both in-nodes and out-nodes, only the paths

43

beginning with out-nodes need to be converted, this is

because the in-nodes will either be the end of a path

between branches, or will be handled at a later stage.

Each path is created by recursively converting nodes

along the direction of flow in the tube until a destination

branch is reached. In figure 8, the first node to be

converted would be node 2 because it is the first out node

of the first branch node. Next the algorithm would convert

the node path beginning with node 3 (step 3A). Since it is

not the end of a path the path conversion method will

recursively convert the path beginning at node 4 (step 3B).

At this point the path has been fully converted, and the

algorithm moves onto step 4, the conversion of the final

out-node. This process will continue until each out-node

and its path have been converted, more detail on how each

node is converted will be given in a later subsection.

At this point each out-node has been converted, and

all that is left are the special cases where the flow

starts at a node (i.e. a node with no in-node) and the

nodes that are not connected to any branches. This is step

5 in the example provided by figure 8. Node 1 will be

converted and the process will continue as described in

algorithm 6.

44

Figure 8 Sample Branch Structure

Now that each node connected to a branch has been

converted the nodes which are disconnected from the

branches are converted. This process is similar to step 5

in figure 8, a node with no in-node is converted and it

simply reverts back to the path conversion portion of

algorithm 6.

Finally we have the special case in which there is a

ring of nodes, meaning each node has an in-node. If this

case occurs any node in the ring is chosen and converted,

then the nodes are converted in order around the ring.

1. Create Branch

The most important part of the process is the creation

of the branch meshes; this not only takes the most time,

but allows for the greatest variation in quality of the

45

mesh. There are six major steps in this process which can

be seen in algorithm 7.

mesh convert_branch(b)
 Shpere s
 foreach (Node n in neighbors)
 c = Create_Cross_Section(n)
 Project_Cross_Section(c, s)
 Create_Convex_Hull(s)
 Remove_Faces(s)
 foreach (Node n in neighbors)
 Create_Extrusion(n, s)

 return s.mesh
 Manipulate_Sphere(s)

Algorithm 9 Branch Conversion

The first step is to create a cross-section for each

node, this can be of any shape and will be representative

of the node that neighbors the branch. This node is then

projected onto a sphere of sufficient size so that there

can be no overlap of vertices among cross sections. Next a

convex hull is created containing each of the vertices, the

resulting mesh contains each of the original cross-section

projections that were created in step 2. This must be

ensured so that each of these projections can be removed in

step 4 which will allow for the extrusions to be created in

step 5, these extrusions represent the links between each

node and the current branch node. The final step is to

manipulate the sphere so that it becomes small enough to

not envelop the extrusions but large enough to maintain

consistency. This is where much of the variability comes

from, the amount and method to manipulate the branch is

46

what allows for many different results from the same

algorithm. The method that is used in this implementation

is unchanged from the previous application, but should be

examined in the future.

2. Create Node

The final part of the algorithm is to create the node

extrusions for every remaining node, this is done by

connecting sequential nodes together using an extrusion

similar to the extrusion created between each node and its

branch. There are two steps that are involved in this

process, the first is to create a cross section at each of

the two consecutive nodes if one does not already exist,

and the second is to actually create the extrusion.

B. Implementation

 The visualization portion of this project is being

done using XNA which is a free platform that makes it much

easier to create games or graphical environments. For this

project the XNA framework was placed into a control so that

the program can have a menu system as well, this menu

system allows for many things to be done using the half-

edge data structure and mesh creation algorithm. The

previous application used open-inventor for its menu system

which will be replaced using window forms which would allow

47

the application to be closed source if desired.

Additionally since XNA is being used for the visualization

only, the important parts of the application can be run

without using any external libraries which satisfies one of

the conditions this project had at its inception.

1. Debugging

One useful addition to the application was a method

for debugging visually using incremental construction of

the mesh. The added method allowed for one to view the step

by step process of a the creation of a single branch or to

see the step by step process to create the overall

structure, essentially one can step through either

algorithm 8 or algorithm 7 to see if there are any errors

during construction or to determine when the error occurs.

This has proven very valuable during the initial

implementation because it is much easier to determine if

there are error visually rather than to analyze the mesh

structure at each step.

C. Reduction of twisting

One problem that was encountered during development is

that along certain paths, the tube structure would become

twisted resulting in meshes that intersected in on

48

themselves or looked like figure 9, in that they were now

concave in some cases, when they should always be convex.

Figure 9 Twisted Tube

This problem was solved using a technique called local

alignment which attempted to rotate the vertices of each

cross-section to have as close as possible orientation to

the previous cross-section, this is done by rotating the

cross-section about the axis created between the two an

amount that minimizes the angle between two chosen

vertices, there is a second technique called global

alignment that would cause all cross-sections to have the

same alignment, but that technique has not been implemented

and should be considered a future possibility.

D. Improved creation of two-branch pipes

 In some cases the path created between three nodes can

have very poor mesh quality, this can be due to any number

of reasons, but is usually attributable to a sharp bend

49

between the three, this results in the cross-sectional area

being reduced no nearly zero in some cases which would not

happen in nature. To prevent this defect three alternative

methods were investigated, the first method was to use an

additional virtual node that was equidistant with maximum

distance from the first two nodes, however for this node no

extrusion was made. This had the effect of creating a

three-branch with only two extrusions and resulted in a

mesh with more consistency and natural appearance as shown

in figure 10.

Figure 10 Modified Two-Branch Method 1

50

A second method investigated was to use an additional

cross section in the same location as the previous method,

but for this method the cross-sections are manipulated

using a different method. First instead of moving each

vertex independently the vertex groups were moved together

to maintain a square cross-section. Next the real branches

that will soon have extrusions were moved inward the

maximum possible amount without causing overlap. Finally

the virtual cross section was moved to be a distance away

from the actual cross-sections that at its shortest is

equal to the radius of either the largest node, or the

radius of the branch. An example can be seen in figure 11.

Figure 11 Modified Two-Branch Method 2

51

The next attempt was directed toward making each

branch node more spherical, and this was done by attempting

to add more vertices to the convex hull creation. This

method did little to solve the problem resulting from

having too tight a bend in the path, but it did have a nice

effect for some other structures, one such structure can be

seen in figure 12 below. In order to determine the vertices

that will be added to the hull a set of vertices that are

approximately equally distributed was created, next each of

those vertices was tested to see if it would cause a cross

section to not be present in the convex hull. If this is

the case the vertex was removed and the process carried out

normally. The green vertices in figure 12 are the vertices

that were added by this process.

Figure 12 Adding additional points to the convex hull

E. Convex Hull

 One of the important steps of the creation of the 3D

tube mesh is the convex hull algorithm, the convex hull

algorithm accounts for a majority of the time for the

entire process to complete, this is because a quadratic

algorithm is being used because it allows for easy

52

debugging. Additionally the small number of points for most

cases means that it may be beneficial to continue using the

incremental algorithm rather than introduce a divide and

conquer algorithm that may have more overhead.

 It should be noted that the convex hull creation is

actually a special case in that each point will be part of

the final hull and each point already lies on a known

sphere. This means that there may be a more efficient

algorithm that applies only to this special case that can

be used.

53

VI. Results

One of the major goals of this project was to decrease

the time it takes for the steps involved in the creation of

these tube structures. There are two applications that this

new implementation will be compared against, the original

implementation in C++, and the initial implementation in

C#. The latter only being suitable to make comparisons in

subdivision of surfaces, and general surface creation time

due to the early nature of the implementation (at the time

this project started the tube creation had not yet been

implemented in the C# version).

The first comparison will be that of the general

surface creation time, this is the time to load in an off

file and convert it to the half-edge data structure. The

comparison will be made for four spheres having 64, 256,

1024, and 4096 vertices. Table 1 shows that with very few

vertices the improvement is very little but as the number

of vertices increases the time cost savings becomes

extremely large. This is because the new algorithm is

completed in linear time rather than quadratic.

54

Table 2 Comparison of Mesh Creation Times

Vertices Initial (ms) Improved
64 7 6
256 30 8
1024 385 13
4096 5412 40

A. Subdivision

 Next we will compare the results of the

subdivision algorithm being used in the two C#

implementations, both use loop subdivision which allows us

to compare the two on the basis of their implementations.

For this comparison four spheres will again be used this

time 64, 144, 256, and 400 vertices.

Table 3 Comparison of Subdivision Times

Vertices
(before)

Vertices
(after)

Initial
(ms)

Improved
(ms)

64 270 25.5166 14.4952
144 598 101.8767 16.1378
256 1054 291.7180 18.9798
400 1638 701.2819 22.9138

The improved implementation offers an extreme time

cost savings over the initial implementation due to its

linear running time as opposed to the quadratic running

time of the initial implementation. Table 4 shows that the

new implementation also offers a significant speed up over

the C++ implementations, the speed up factor is in some

cases as high as 3.47.

55

Table 4 Comparison of Subdivision Times

File Name C++ (ms) C# (ms) Speed Up
eyespline 51.93 14.92 3.47
Lattice_10_8_3 2436 1072 2.26
Mobius_16_16 902.6 321.5 2.81
polyhedron 203.6 60.88 3.23
Tree3 260.6 76.83 3.39

B. Tube Creation

In the previous two sections comparisons were being

made to an unfinished implementation and largely the

improvement was due to improvements in the implementation

rather than improvements in the data structure. For this

section a comparison between a finished implementation and

the improved version being presented will be made. This

comparison is to ensure that the new version is at least as

good as the previous version which would show that the new

version is an acceptable alternative that runs using C# and

can be easily modified and used (as shown previously).

For this section five directed graphs are used, each

one goes through the entire process in each application and

the total time to completion will be compared. Additionally

both resulting tube structures will be shown in an effort

to prove the efficacy of the improved implementation. Table

5 shows the speed up offered by this new implementation in

the creation of the tube structures. The newer

56

implementation offers as much as 7x speed up over the C++

implementation.

Table 5 Comparison of Tube Creation Times

File Name C++ (ms) C# (ms) Speed Up
eyespline 68.62 9.540 7.193
Lattice_10_8_3 3231 654.3 4.939
Mobius_16_16 1354 221.8 6.104
polyhedron 320.5 47.09 6.805
Tree3 255.9 49.89 5.130

C. Non-Orientable Surfaces

 The final improvement over previous attempts is that

the proposed implementation has support for non-orientable

surfaces such as the Mobius strip, the Klein bottle, and

any other constructed surface that does not have

neighboring faces with the same orientation. This section

will present each of these types of surface as well as the

result of these surfaces after subdivision.

 The purpose of showing these surfaces after

subdivision is so that it can be seen that the faces stay

connected and can reference each other (if they were not

connected the subdivision algorithm would shrink them apart

in a way similar to what will be seen at the edges of the

surface. Figure 13 shows the original surface with no

culling and figure 14 shows counter clockwise culling, this

is done to show which faces are oriented in which

57

directions. Loop subdivision is performed and the results

are shown in figures 15 and 16, as you can see all of the

connections remain indicating that the components of

subdivision (including the data structure) do not break

when using non-orientable surfaces. Figures 17-20 are

included to further demonstrate this achievement;

additionally, for each surface the data structure was

checked to ensure that it was valid and connected as it

should be.

Figure 13 Random Oriented Plane

Figure 14 Plane Culled CCW

58

Figure 15 Plane Subdivided

Figure 16 Plane Subdivided and

Culled

Figure 17 Mobius strip

Figure 18 Subdivided Mobius strip

59

Figure 19 Klein bottle

Figure 20 Subdivided Klein bottle

D. Evaluation of proposed Data Structure

In this section the data structure being proposed will

be compared to the alternative implementations that are

currently in use, namely CGAL and OpenMesh. They will be

compared on the basis of the access, modification,

operations, parameterization, and input/output.

 The first criterion is access, this metric has many

simple aspects such as access of vertices, edges, and faces

which are the basic elements and many other complex

aspects. First we look at the simple, each data structure

has references to lists of vertices, edges, and faces. In

60

this regard there is no advantage that could not easily be

corrected by adding an additional reference that is not

present. The advantage lies in the complex aspects of the

access metric; the proposed data structure allows for the

quick access to boundary edges using the unlinked half-edge

hash-table. A second advantage lies in the ease of use of

the circulator in the new implementation which uses an

enumerator to make the access much more natural and simple.

 The next criterion is modification, which relates to

the ease and ability to modify the mesh by adding and

removing elements. The requirements of a half-edge data

structure is that after any modification by the user, the

data structure remain consistent. Each of the three data

structures allow for the addition and removal of faces and

vertices and each guarantees that the mesh stay consistent

after the operations. Each data structure has roughly the

same ability to modify the mesh so while there is no

improvement here, there is no degradation either.

 The most important criterion is the ability to perform

necessary operations on the mesh, it is here that a great

deal of improvement over the initial C# implementation was

done. This metric contains such operations as half-edge

collapse, face collapse, and other simplification methods

61

that should be included in the data structure. For the

proposed data structure the important simplification

methods were included, but time limitations meant that only

some could be implemented. More importantly thought the

ability to create a convex hull in the half-edge data

structure and the ability to perform subdivision were

included. These are necessary parts of the application

being improved upon and as such were implemented first and

carefully. So every necessary operation is included but not

every available operation, for this reason CGAL and

OpenMesh are still better alternatives in some applications

per this metric.

 The next criterion is parameterization, which relates

to storing necessary additional data inside each

vertex/edge/face. It is here where CGAL offers a much

better alternative using template classes for additional

robustness. However the proposed application needs only to

store certain variables for its completion and these can be

added prior to compilation time in order to accomplish this

goal. In the future it will be valuable to add these

aspects but for now the data structure offers enough to

complete the process.

62

 The final criterion is input/output which means that

the mesh should be easily converted and stored to many file

types. This data structure allows for one to save only to

an .off file, but allows for reading from file types such

as .tub, .gr, and .off. For this reason the data structure

again meets the criteria to be a half-edge data structure

and offers some benefits above the default implementation

of CGAL and OpenMesh.

 	

63

VII. Recommendations

A. Convex Hull Creation

As mentioned, the convex hull that is created is a

special case in which all of the points are on the same

sphere. It should also be restated that the convex hull

construction is the most expensive method in the

implementation and has, by itself, a quadratic time

complexity. More research should be done into determining

if the special case for the convex hull allows for a

simpler method to be used. Even if no such method can be

found there are faster convex hull methods than the current

implementation; the incremental method was chosen for its

simplicity and the ability to see the construction of the

convex hull as it occurs. A new method should be

implemented in which the goal is speed rather than

simplicity.

B. Texture Assignment

Video games require texturing for visual quality; a

simple mesh lacks the visual effect afforded through the

use of texturing. It may be valuable to find a way to

programmatically texture or color the given mesh.

64

VIII. LIST OF REFERENCES

Hughes, Graham. (2011). How big is 'big data' in healthcare.

Retrieved from
http://blogs.sas.com/content/hls/2011/10/21/how-big-is-big-
data-in-healthcare/

Kajak, Bartosz. (2011). Improved algorithms for ear-clipping
triangulation. (Master of Science), UNLV, Las Vegas.
Retrieved from
http://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?arti
cle=2314&context=thesesdissertations

Kettner, Lutz. (2012). Hlafedge Data Structure. 2012, from
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Half
edgeDS/Chapter_main.html

Kobbelt, Mario Botsch; Mark Pauly; Christian R¨ossl; Stephen
Bischoff; Leif. Geometric Modeling Based on Triangle
Meshes.

Leadwerks. (2006). What is Constructive Solid Geometry. 2012,
from http://www.leadwerks.com/files/csg.pdf

Levoy, Marc. (2011). The Digital Michelangelo Project. 2012,
from http://graphics.stanford.edu/data/mich/

Marshall, David. (1997). Boundary Representation. 2012, from
http://www.cs.cf.ac.uk/Dave/Vision_lecture/node57.html

Widas, Peter. (1997). Introduction to Finite Element Analysis.
2012, from
http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/n
um/widas/history.html

Zorin, Denis. (2004). Mesh Data Structures. 2012, from
http://mrl.nyu.edu/~dzorin/ig04/lecture24/meshes.pdf

65

IX.

CURRICULUM VITAE

NAME: Richard Paris

ADDRESS: 1706 Tempest Way

 Louisville, Kentucky 40216

EDUCATION: B.S. Computer Engineering & Computer Science
University of Louisville
2012

B.S. Electrical & Computer Engineering
University of Louisville
2013

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2013

	Modified half-edge data structure and its applications to 3D mesh generation for complex tube networks.
	Richard Paris
	Recommended Citation

	tmp.1423685735.pdf.gxGuW

