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Abstract This paper presents a novel
hole-filling algorithm that can fill
arbitrary holes in triangular mesh
models. First, the advancing front
mesh technique is used to cover the
hole with newly created triangles.
Next, the desirable normals of the
new triangles are approximated
using our desirable normal com-
puting schemes. Finally, the three
coordinates of every new vertex are
re-positioned by solving the Poisson
equation based on the desirable
normals and the boundary vertices of

the hole. Many experimental results
and error evaluations are given to
show the robustness and efficiency of
the algorithm.
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1 Introduction

Triangular meshes are used widely to represent an ob-
ject in 3D modeling systems and computer graphics ap-
plications. And they can be obtained in various ways
such as a 3D scanner and computer-aided design soft-
ware. However, due to the limitations of the generation
methods, the resulting triangular mesh models cannot be
utilized directly by other applications often because of
their incompletion, i.e., containing some defects, such as
holes, self-intersecting triangles, gaps, etc. Therefore, cer-
tain repairs must be done before taking these models into
actual applications, and hole-filling is an important one
among them. Another important application of the hole-
filling algorithm is in the area of feature suppression. In
many computer-aided engineering applications, detailed
geometric features are not necessary, so that the triangles
involved in the detailed features need to be deleted and the
resulting hole must be filled.

Many hole-filling approaches have been proposed in the
literature. These approaches can be divided into two cate-
gories: voxel-based and triangle-based. In the voxel-based

approaches, a mesh model is first converted into a volu-
metric representation which consists of discrete volumes
named voxels, and then different methods are utilized to
patch up the holes in volumetric space. Davis et al. [7] used
volumetric diffusion to fill the gaps and Curless et al. [6]
employed space carving and iso-surface extraction to fill
holes. Ju [12] constructed an inside/outside volume using
an octree grid and re-constructed the surface by contour-
ing. Joshua and Szymon [14] used a min-cut algorithm to
split space into inside and outside portions, and patched the
holes simultaneously in a globally sensitive manner. Voxel-
based approaches work well for complex holes but they are
all time-consuming and may generate incorrect topology in
some cases.

In the triangle-based approaches, the holes are patched
by dealing with the triangles directly. Holes with regu-
lar boundary over a relatively planar region can be easily
patched via planar triangulation, which has been described
in detail by a number of textbooks and papers [8, 11, 17].
However, filling a complex hole over an irregular region
is much more difficult. To solve this problem, Carr et
al. [1] used radial basis function to construct an implicit



W. Zhao et al.

surface to cover the hole. This method works well for
convex surfaces and can handle irregular holes. But diffi-
culties arise when the underlying surface is too complex to
be described by a single-value function. Liepa et al. [15]
presented an umbrella operator to fair the triangulation
over the hole to estimate the underlying geometry. How-
ever, the O(n3) performance of the triangulation method
limits this method from being used widely. Jun [13] pro-
posed a hole-filling method based on a piecewise scheme.
His method divides a complex hole into several simple
holes and all sub-holes are sequentially filled with planar
triangulation; sub-division and refinement are then em-
ployed to smooth the new triangles. The negative side of
the method is that too many overlaps or twists may make
it crash and iterative refinement is a time-consuming pro-
cess. Chen et al. [2] proposed a hole-filling method which
can fill the hole and recover its sharp feature involved in
the hole area. With this method, holes are filled using a ra-
dial basis function; a feature enhancement process based
on Bayesian classification [3] and sharpness dependent fil-
ter [4] is then applied if there exists any sharp feature on
the hole boundary.

Some hole-filling algorithms for parametric surfaces
have been presented [5, 16, 19]. Since the boundaries of
the holes handled are usually made up of a B-spline curve,
conserving continuity is more important for these hole-
filling algorithms.

Ideally, hole-filling algorithm should posses the fol-
lowing properties: (1) able to cover an arbitrary hole for
any model (robustness), (2) capable of filling large holes
in a reasonable amount of time (efficiency), (3) enable the
patched surface to match the missing geometry well (pre-
cision).

Unfortunately, due to the complexity and diversity of
the holes, no existing hole-filling methods satisfy all the
above desirable properties. In particular, the robustness is
hard to achieve. That is, most existing methods have dif-
ficulties in dealing with complex and highly curved holes.
In this paper, we present a novel hole-filling algorithm for
mesh models. The advancing front mesh technique is em-
ployed first to generate a new triangular mesh to cover the

Fig. 1. Basic concepts related to a hole in a mesh model

hole. Then we utilize the Poisson equation to optimize the
new mesh. The algorithm is intended to be simple, fast and
robust.

2 Preliminaries

2.1 Basic concepts

A triangular mesh is defined as a set of vertices and a set of
oriented triangles that join these vertices. If two triangles
share a common edge, the two triangles are adjacent tri-
angles. An edge usually links two triangles. If it connects
only one, the edge is called a boundary edge. A bound-
ary vertex refers to the vertex on boundary edge. A hole
is a closed loop of boundary edges. Boundary triangles
are those triangles that own one or two boundary vertices.
All triangles who share one common vertex are called the
1-ring triangles of the vertex. All edges who share one
common vertex are called the 1-ring edges of the vertex.
And, all vertices on 1-ring edges of a vertex (except itself)
are called 1-ring vertices of the vertex. The vertex normal
refers to the average normal of all the 1-ring triangles of
the vertex. The triangle normal is the normal of the plane
on which the triangle lies and can be computed as the aver-
age normal of its three vertices. Figure 1 illustrates these
basic conceptions.

All mesh models in this paper are assumed to be ori-
ented, manifold and connected, and a given hole is as-
sumed to have no islands. To efficiently support our hole-
filling algorithm, a vertex-based topological structure is
also used in this work, which records 1-ring vertices,
1-ring triangles and 1-ring edges of every vertex of the
model.

2.2 Algorithm overview

In order to make hole-filling simple, fast and robust, we
propose a novel algorithm. The key ideas consist of two
aspects. First, the advancing front mesh technique instead
of the traditional 3D polygon triangulation method is em-
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Fig. 2a,b. Algorithm flowchart and its illustration. a The flowchart. b The illustration of flowchart

ployed to generate the initial patch mesh to make the al-
gorithm more robust and efficient. Second, the triangles
involved in the initial patch mesh are modified by esti-
mating their desirable normals instead of relocating them
directly, and are re-positioned finally by solving the Pois-
son equation according to the desirable normals and the
boundary vertices of the hole to make the algorithm more
accurate. In this work, two schemes of computing desir-
able normals, e.g., harmonic-based scheme and geodesic-
based scheme, are given and used so as to adapt to differ-
ent situations. When the surrounding shape of the hole is
relatively planar, the harmonic-based scheme is adopted.
Otherwise, the geodesic-based scheme is utilized.

The main steps of the proposed hole-filling algorithm
include:

Step 1. Identify holes in triangular mesh;

Step 2. For each hole in mesh model:
(1) Generate its initial patch mesh via the advancing front

mesh (AFM) technique.
(2) Refine the patch mesh based on the Poisson equation as

follows:

– Compute desirable normals using the harmonic
equation or geodesic interpolation.

– Rotate triangles by local rotation.
– Solve Poisson equation and obtain the new coordi-

nates of every vertex.
– Update the coordinates and obtain the smoothed

patch mesh.

Figure 2 shows the flowchart of the proposed hole-
filling algorithm. The detailed algorithms will be de-
scribed in the following sections.

3 Hole identification

The first step of hole-filling is to detect all the holes in the
given triangular mesh model. Since a vertex-based topo-

logical structure is used in this work, all boundary vertices
can be easily identified by checking the numbers of their
1-ring triangles and 1-ring edges, i.e., if the two numbers
of a vertex are not equal, the vertex is a boundary vertex.
Once a seed boundary vertex is identified, from it a set of
connected boundary edges can be traced. If all the bound-
ary edges form a closed loop, they make up a hole. In this
way, all the holes can be identified.

4 Initial patch mesh generation

In this work, we adopt the advancing front mesh (AFM)
technique [10] to generate an initial patch mesh over
the hole. The method consists of the following six
steps:

Step 1. Initialize the front using the boundary vertices of
the hole.

Step 2. Calculate the angle θi between two adjacent
boundary edges(ei and ei+1) at each vertex vi on the front.

Step 3. Starting from the vertex vi with the smallest
angle θi , create new triangles on the plane determined by
ei and ei+1 with the three rules shown in Fig. 3.

Step 4. Compute the distance between each newly created
vertex and every related boundary vertex; if the distance
between them is less than the given threshold, they are
merged.

Step 5. Update the front.

Step 6. Repeat Steps 2 through 5 until the whole region has
been patched by all newly created triangles.

This method can always patch the hole, whatever its
shape [10], and guarantee the robustness of our algorithm.
The triangular mesh created by AFM is called the ini-
tial patch mesh, because these triangles cover the hole in
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Fig. 3a–c. Rules for creating triangles: a θi ≤ 75◦; b 75◦ < θi ≤ 135◦; c θi > 135◦

Fig. 4a–d. Process of AFM. a The original hole; b and c two intermediate stages; d the initial patch mesh created

a manner of a piece of a patch. The complete AFM process
is illustrated in Fig. 4.

5 Refinement based on Poisson equation

Because the new vertices on the initial patch mesh are
ragged and scraggly, they cannot adapt to the surround-
ing shape of the hole well. Therefore they need to be
re-positioned in order to make the patch mesh connect the
boundary vertices smoothly and approximate the missing
geometry more accurately. In this work, the Poisson equa-
tion is employed to refine the patch mesh.

5.1 Poisson equation

In our implementation, we choose the Poisson equa-
tion with Dirichlet boundary conditions [18, 22] to refine
the patch mesh. The Poisson equation with the Dirichlet
boundary is formulated as

∆ f = div h, f |∂Ω = f ∗|∂Ω (1)

where f is an unknown scalar function, ∆ f = ∂2

∂x2 + ∂2

∂y2

+ ∂2

∂z2 is Laplacian operator, h is the guidance vector filed,
div h is the divergence of h, and f ∗ is a known scalar func-
tion providing the boundary condition. It can be verified

that the Poisson equation is the equivalent to the mini-
mization problem

min
f

∫

Ω

|∇ f −h|2, with f |∂Ω = f ∗|∂Ω (2)

where ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z ) is the gradient operator.

The guidance vector field on a discrete triangle mesh is
defined to be a piecewise constant vector function whose
domain is the set of all points on the mesh surface. The
constant vector is defined for each triangle, and this vec-
tor is coplanar with the triangle. Given a discrete vector
field h on a mesh, its divergence at vertex vi can be defined
to be

(div h)(vi) =
∑

Ti∈Ni

∇Bi,k ·h|Tk| (3)

where Ni is the 1-ring vertices of vi , |Tk| is the area of
triangle Tk, and ∇Bi,k is the gradient vector of the vertex
within Tk. The discrete gradient of the scalar function f on
a discrete mesh is expressed as

∇ f(v) =
∑

i

fi∇φi(v) (4)

where φi(·) is a piecewise linear basis function whose
value is 1 at vertex vi and 0 at all other vertices. The term
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fi is a scalar (vector) value attached to vertex vi , and it is
one of the coordinates of vi in our implementation.

The discrete Laplacian operator is

∆ f(vi) =
∑

vj∈Ni

1

2
(cot αi, j + cot βi, j)( fi − f j) (5)

where αi, j and βi, j are the two angles opposite to edge
(vi, vj) (see Fig. 5) and fi is one of the coordinates
of the vertex indexed i in our reconstruction step. Fi-
nally, the discrete Poisson equation is expressed as: ∆ f ≡
div(∇ f) = div h.

Fig. 5. Angles for the Poisson equation

The discrete Poisson equation is actually a sparse lin-
ear system

Ax = b (6)

where the unknown vector x represents special coordi-
nates of all vertices on the reconstructed patch mesh, the
coefficient matrix A is determined by Eq. 5, and the vector
b is a known vector field obtained from the collection of
divergence values at all boundary vertices formulated by
Eq. 3, which is taken as the boundary condition.

The Poisson equation implies that in order to recon-
struct the patch mesh we need a guidance vector field,
i.e., h, defined on the triangles of the patch mesh. In this
work, we construct the guidance field by triangles rota-
tion.

5.2 Desirable normals computation and triangles rotation

Before performing triangles rotation, a desirable normal
for each triangle should be calculated first. Because of
the variety of holes, it is hard to find an almighty es-
timating scheme to compute desirable normals for all
kinds of holes. In this work, we use two normal es-
timating methods, harmonic-based and geodesic-based,
for different situations. The former is faster but only
adapts to relatively planar holes and the second works
well for the highly curved holes. The user will be
asked to choose one to use at the beginning of hole-
filling.

5.2.1 Harmonic-based desirable normal computing

The earliest purpose of discrete harmonic functions is to
map a disk-like surface ST onto a plane S∗ [9, 20]. The ba-
sic idea is to find a piecewise linear mapping f : ST → S∗
to minimize the Dirichlet energy

E = 1

2

∫

ST

‖gradST
‖2 (7)

subject to the Dirichlet boundary condition f |∂ST = f0. As
for triangle T = {v1, v2, v3}, the Dirichlet energy can be
expressed as
∫

ST

‖gradT f ‖2 = 1

2

(
cot θ3‖ f(v1)− f(v2)‖2

+ cot θ2‖ f(v1)− f(v3)‖2

+ cot θ1‖ f(v2)− f(v3)‖2) (8)

where the angles are shown in Fig. 6. The equation for the
minimization problem can therefore be re-expressed as the
following linear system
∑

vj∈Ni
ωi, j( f(vj)− f(vi)) = 0, vi ∈ VI (9)

where ωi, j = cot αi, j +cotβi, j , the angles αi, j and βi, j are
shown in Fig. 5, and Ni refers to the 1-ring vertices of
vertex vi . The associated matrix is symmetric and posi-
tive, and thus the linear system is uniquely solvable. The
system can be solved efficiently by the conjugate gradient
method.

It is observed that if we directly use the harmonic
equation to obtain the altered coordinates of new vertices
through the above method, most of the resulting mesh will
be depressed, as shown in Fig. 7b. Obviously this is un-
desirable. In order to solve this problem, in this work the
equation is constructed to estimate a new normal (desirable
normal) for each vertex of the patch mesh instead of the
vertex coordinates. Specifically, in Eq. 9, f(v) refers to the
normal rather than the coordinates of vertex v. Note that the

Fig. 6. Angles for the harmonic equation
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Fig. 7a–d. Reconstruction of the patch mesh. a The initial patch mesh (yellow). b The reconstructed mesh based on the harmonic equation.
c The torn patch mesh after performing triangles rotation (red). d The reconstructed mesh based on the Poisson equation

system has to be solved three times, once for x-, once for y-
and once for the z-component of the new normal.

5.2.2 Geodesic-based desirable normal computing

If the missing geometry of a hole is of high curvature and
cannot be described by a quadratic function, the initial
patch mesh will be sunken since the Dirichlet energy is
quadratic. For such a case, we use geodesic interpolation
to compute the desirable normals.

We first compute the geodesic distance from each new
vertex, denoted by v, to all boundary vertices. The normal
of boundary vertex vb is then weighted by dis(v, vb)

−n

and the final normal of v is the sum of weighted nor-
mals of all boundary vertices. Here dis(v, vb) denotes the
geodesic distance from v to vb. In our practice, n ∈ [3, 5] is
appropriate. As for overly complex holes, users can spec-
ify a threshold radius r, and the normal of vertex v is
estimated by those boundary vertices whose geodesic dis-
tances to v are less than r. Our experimental results show
that the geodesic-based normal estimation method is suit-
able for highly curved holes.

5.2.3 Triangle rotation

After the desirable normals of all new vertices are cal-
culated, new normals of all the triangles involved in the

Fig. 8. Rotation of a triangle

initial patch mesh can be easily determined from the de-
sirable normals of their three vertices. Then the triangles
need to be rotated to the new orientation. The rotating is
achieved by applying a local transformation to each trian-
gle of the initial patch mesh. Suppose ni , n′

i and ci are the
original normal, the new normal and the center of triangle
fi , then the rotating matrix Ri of fi is obtained by rotating
ni to n′

i around ci , by which the three vertices of triangle fi
are transformed to obtain their new coordinates. The local
rotation is illustrated by Fig. 8.

5.3 Patch mesh reconstruction based on Poisson equation

After the triangle rotation is performed, all triangles of
the patch mesh turn to a new direction. Essentially, the
new normal of each triangle implies the “right” direction
of the triangle. Because the local transformation applied
to each triangle may be different, triangles of the patch
mesh are usually torn apart and not connected to each
other anymore (see Fig. 7c). It is these torn triangles that
construct a guidance vector field the Poisson equation re-
quires.

Once a discrete guidance vector fields is given, its di-
vergence at a vertex can be computed. It is observed that
local rotation to the triangles changes the gradients of each
newly created vertex and three new gradient vectors are
obtained (for x, y and z, respectively). If we consider the
new gradient vector fields as the guidance fields in the
Poisson equation, a piecewise continuous scalar function,
i.e., a connected mesh, can be reconstructed, which keeps
the gradients unchanged in the least squares sense.

The specific algorithm of reconstructing the patch
mesh based on the Poisson equation includes the follow-
ing steps:

Step 1. Compute gradients of each new vertex on their ad-
jacent triangles using Eq. 4.

Step 2. Compute the divergence of every boundary vertex
using Eq. 3.

Step 3. Determine the coefficient matrix A according to
Eq. 5.
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Step 4. Initialize the vector b using divergences of all
boundary vertices.

Step 5. Set up and solve the Poisson equation and obtain
the new coordinates of all vertices of the patch mesh.

Fig. 9a,b. Two examples with complex holes. a A sphere with a complex hole and the result. b A bunny model with a complex hole and
the result

Fig. 10a–c. Examples with large and highly curved holes. a An incomplete sphere and the result. b An example from Jun and the result.
c A similar case to b and our result. Geodesic-based normal estimation scheme (n = 5) is taken in this case. The new vertices number is
83 and the time of computing geodesic distance is 742 ms

Step 6. Update the vertices’ coordinates and reconstruct
the patch mesh.

Note that during computation of the divergences, the
transformed vertices and the new normals of triangles
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Fig. 11a–c. Three groups of models for error evaluation: a saddle; b span; c torus

Table 1. Error evaluation

Model Normals estimation Vertices num. Triangles num. Average Face Average
name scheme on patch on patch distance area error

Saddle Harmonic 280 648 0.10 4573 0.0015
Span Geodesic (n = 4) 281 672 0.11 769 0.0039
Torus Harmonic 111 192 0.05 4107 0.0024

Table 2. Computing time

Model Vertices num. Triangles num. New created Time of solving Time of solving
name vertices num. harmonic equation Poisson equation

Buddha 293 232 144 628 578 78 ms 97 ms
Dragon 100 207 20 250 281 33 ms 36 ms

Cow 25 289 50 238 181 8 ms 10 ms

rather than the original ones are utilized. Similar to the
harmonic equation, this system has to be solved three
times to obtain three coordinates of each new vertex.

Intuitively, the Poisson equation constructs a triangu-
lar mesh with known topology (connectivity) but un-
known geometry (vertex coordinates), and solving the
Poisson equation is analogous to stitching together the
previously torn initial patch mesh again. As an example,
Fig. 7d shows the patch mesh reconstructed from the patch
mesh depicted in Fig. 7c based on the Poisson equa-
tion.

6 Implementation and analysis

The proposed hole-filling algorithm has been imple-
mented with VC++7.1 and OpenGL. All experimental
results in this paper were obtained on a 2.0 GHz Pen-
tium IV personal computer with 1024 MB memory.

Many examples have been used to test the robustness,
efficiency and accuracy of the method. Two mesh models
with complex holes and the results of hole-filling with our
approach are shown in Fig. 9. Figure 9a shows a sphere
with a complex hole and the hole-filling result. Figure 9b
depicts the Stanford bunny with a complicated hole and
the hole-filling results. The experimental results show that
our approach works well for complex holes and can pro-
duce high-quality mesh.

Figure 10a shows an incomplete sphere with 1/3
geometry lost and the hole-filling result. The experimental
result indicates that our hole-filling algorithm approxi-
mates the missing geometry very well. Figure 10b,c are
used to make a comparison between our algorithm and
the work done by Jun [13]. Figure 10b is from [13], from
which it can be seen that the filled region is subsided ob-
viously. Figure 10c shows the hole-filling effect of our
algorithm, and it appears to be more successful than the
Jun’s algorithm.
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Fig. 12a–c. Three more complex examples: a buddha; b dragon; c cow

Three mesh models converted from their correspond-
ing B-rep models are used to evaluate the precision of our
algorithm, as shown in Fig. 11. The distances between the
vertices on the patch mesh and the original analytic sur-

face are used to evaluate the precision of our algorithm.
The quotient of the average distance and the square root of
analytic surface area is considered as the error of our algo-
rithm. The evaluated errors of the three models are listed
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in Table 1. It can be seen that the average errors are all less
than 0.5%.

Some other examples are shown in Fig. 12 and their
computing times are shown in Table 2. According to the
results, our algorithm is faster than voxel-based algo-
rithms.

In our algorithm, computing geodesic distance is
a time-consuming step. In this work, Surazhsky’s
method [21] is applied to compute geodesic distance be-
tween two vertices on a mesh. Fortunately, only the ver-
tices on the patch mesh must be taken into account for
computing the geodesic distances and the number of these
vertices is much less than that of all the vertices of the
whole model. Furthermore, only when the hole is highly
curved is the geodesic-based scheme required.

Solving the Poisson equation and harmonic equation
is another time-consuming step. When the number of the
new vertices on the patch mesh is too large, it is hard
to achieve interactive rates because of solving the two
equations. But fortunately, only the vertices on the patch
mesh need to be determined by solving the equations. Ac-
cording to our experiments, when the number of the new
vertices is less than 5000, these equations can be solved in
one second on our personal computer.

7 Conclusions

In this paper a novel algorithm for filling holes in triangu-
lar mesh is proposed. The advancing front mesh technique
is used to cover the hole with newly created triangles,
which guarantees the robustness of the approach. The tri-
angles of the initial patch mesh are modified by estimating
their desirable normals instead of relocating them directly.
In this way, the algorithm becomes more accurate. Fi-
nally these triangles are re-positioned by solving the Pois-
son equation according to the desirable normals and the
boundary vertices of the hole.

This approach is of good robustness for: (1) the ad-
vancing front mesh technique can close an arbitrary hole;
(2) solving the harmonic and Poisson equation is a ro-
bust process because they are all symmetric and positive-
defined linear systems and uniquely solvable.

The normal estimating method plays an important role
in our algorithm, directly determining the quality of the re-
constructed patch mesh. How to approximate the normals
more accurately and intuitively is our future work.
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