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This document is originally developed to be used internally, and Universal 
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Principle of robot motion control 
How can the robot move? 

 

 

 

Motion is the basic and essential feature of industrial robots. There are the most important two 

for the robot motion: where to move & how to get there. 

 

 

Target position 

 

A target position indicates where to move. Target positions are recorded in a robot program and 

the robot moves to the target positions repeatedly. As the position is the primary target for industrial 

robots to achieve, we can say that the robots perform position control. 

For industrial robots, the action to record the target positions is normally called teaching. In UR 

robots, the target positions are called Waypoint and are taught by using hands in Freedrive mode 

or jogging from Teach Pendant. 

 

 

Figure 1 Target position and trajectory 

 

 

Trajectory 

 

A trajectory defines how to reach the target position. A robot can move linearly or by curve. In 

general, the robot trajectory depends on the space where the robot refers to. 

In UR robots, the trajectory is specified by Move type on Teach Pendant. We can say that four Move 

types are available for UR robots: MoveJ, MoveL, MoveP and MoveC. Descriptions of each move 

type can be found in the User Manual. 

 

 

Once the target positions are taught and trajectories are specified in the robot program, the robot 

can move repeatedly according to the program. For industrial robots, it is crucial to keep reaching 
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the target positions and repetitive tasks are what the robots can do the best. Therefore, repeatability 

is regarded as one of the most important technical specification. 
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Joint and linear spaces 

Two different spaces for the robot 

 

 

 

Joint space 

 

A robotic arm is composed of links and joints. It is assumed that links are rigid body and their 

lengths are fixed. Then the robot takes a certain pose according to a set of joint angular positions. 

Here, a joint space can be defined as a space to represent the robot in the joint coordinate 

system.  

 

 

Figure 2 Two-axis link 

 

Because the joints are directly controllable, it is easy to handle the robot in the joint space. For 

instance, when moving the robot from the current pose to target pose, if the trajectory is not 

important, we would rotate the joints from the current angles to the target angles. We can call it 

joint movement, which is MoveJ in UR robots. The joint movement is usually preferred for the 

following applications in which the target positions are important, but the trajectory is not essential. 

⚫ Pick and place 

⚫ Injection molding 

⚫ CNC & machine tending 

⚫ Packaging and palletizing 

⚫ Quality inspection (when the robot stops and inspects at each target point) 

 

 

Linear space 

 

However, humans live in a 3-dimensional linear space with X, Y, and Z axes corresponding to the 

Cartesian coordinate system. We would prefer to see the robot states such as position and 

orientation in the linear space. Most tasks are defined in the linear space as well. Let us assume a 
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task to polish the edge line of desk as an example. The robot may have to move linearly to make 

the smooth straight line. In this case, the trajectory should be defined in the linear space, which 

can be called linear movement, which is MoveL in UR robots. For the following applications, the 

linear movement would be necessary. 

⚫ Polishing 

⚫ Gluing, dispensing, and welding 

⚫ Assembly 

 

 

Figure 3 A three-dimensional Cartesian coordinate system1 

 

Even for the applications where the joint movement is preferred as mentioned above, the linear 

movement would partially be needed. For instance, in the pick and place application, the robot 

typically moves to the approach point first, a little bit above the object and then goes down with 

the linear movement to pick the object. If the robot goes down with the joint movement, there is 

a risk to hit the object. 

 

 

To move the robot in the linear space, it is necessary to convert the robot pose values in the 

Cartesian coordinate system to the joint positions in the joint space. On the contrary, the joint 

positions should be converted to the robot pose to identify the robot states in the linear space. 

The calculation to convert between the two different spaces is called kinematics. 

 

 

  

                                           

1 Cartesian coordinate system, Wikipedia 

(https://en.wikipedia.org/wiki/Cartesian_coordinate_system)  

 

 

 

 

 

 

 

       

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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Tool center point in linear space 

An effective point of the robot 

 

 

 

TCP (Tool Center Point) 

 

When operating the robot in the linear space, the position and orientation of its effective point 

should be identified. Then, which part of the robot is an effective point? When considering the fact 

that a tool, mounted on the end part of the robot called tool flange, performs meaningful tasks, it 

should be a TCP (Tool Center Point) to be controlled in the linear space.  

 

 

Figure 4 TCP of a gripper 

 

Once the TCP offset is defined relative to the tool flange, the TCP position of the robot can be 

calculated by kinematics. It would be critical to define the TCP offset especially for the applications 

that require the linear movement. The best way to understand the TCP is to complete the module 

in UR Academy. 

 

 

Figure 5 Comparison of tool path with and without TCP2 

 

                                           

2 Tool Center Point Control (TCP), FANUC America 

(https://www.fanucamerica.com/products/cnc/cnc-technology/tool-center-point-control) 

https://www.fanucamerica.com/products/cnc/cnc-technology/tool-center-point-control
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Base and tool coordinate systems 

 

A TCP has position and orientation coordinates in relation to the base coordinate system, a 

Cartesian coordinate system located with origin in the center of the robot base. As the robot is 

mounted on the fixed location, the base coordinate system is also called absolute or world 

coordinate system. In UR robots, a Cartesian coordinate system is called a feature. The Base feature 

is fixed with the Y axis in line with the robot cable and the upward Z axis. 

 

 

Figure 6 Base feature 

 

As the TCP has position and orientation, the TCP also defines a coordinate system. The tool 

coordinate system makes programming simpler and more accurate.3 In UR robots, the Tool feature 

is located with origin in the center of the current TCP and changes when the robot moves. 

 

                                           

3 Robot Basics: The Importance of the Tool Center Point, Plasma Powders and Systems, Inc. 

(http://www.plasmapowders.com/thermal-spray-robot-basics-the-importance-of-the-tool-center-

point.htm) 

http://www.plasmapowders.com/thermal-spray-robot-basics-the-importance-of-the-tool-center-point.htm
http://www.plasmapowders.com/thermal-spray-robot-basics-the-importance-of-the-tool-center-point.htm


10 

 

 

Figure 7 Tool feature 
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Robot orientation  
How to represent the robot orientation 

 

 

 

What is a robot orientation? 

 

A TCP pose includes the position and orientation. The TCP position is the location of the TCP in 

the linear space and the TCP orientation indicates the directions of X, Y, and Z axes in the tool 

coordinate system. For example, the robot in the figure 1 and 2 is in the same position but its 

orientations are different. It is obvious that the orientation affects the robotic tasks. Let us assume 

that a spray paint tool is mounted on the robot in the figure 1 and 2. The painted area depends on 

the robot orientation as well as the position. Both of position and orientation are basic and crucial 

on the robot motion. 

 

 

Figure 8 A robot facing down 
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Figure 9 A robot looking aside 

 

A position is represented as three values: X, Y, and Z coordinates. This is intuitive and easy to 

understand. It may not be difficult to understand the physical orientation of the robot. However, 

the orientation should be represented as numerical values to control the robot and it is challenging 

to understand. In robotics, the orientation is represented by using the following rotation concepts. 

⚫ Rotation matrix 

⚫ Euler angles 

⚫ Axis-angle representation 

⚫ Quaternion (we do not use it for UR robots) 

 

The advanced use of robot orientation is needed for applications including but not limited to: 

⚫ 3D vision 

⚫ Multi-robot coordination 

⚫ Advanced palletizing 

⚫ Offline programming 

⚫ Welding 
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Rotation matrix 

 

In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean 

space.4  

 

 

Figure 10 Rotation from the frame {𝒊} to {𝒋} 

 

Let us get started with the rotation in two dimensions. In the figure 3, corresponding to the frame 

{𝑖}, the X and Y unit direction vectors of the frame {𝑗} are  

 

𝑢𝑥𝑗
= [

cos 𝜃
sin 𝜃

], 𝑢𝑦𝑗
= [

− sin 𝜃
cos 𝜃

] 

 

Here, the rotation matrix from the frame {𝑖} frame {𝑗} is 

 

𝑅𝒊𝒋 = [𝑢𝑥𝑗
𝑢𝑦𝑗] = [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

 

As an example, the frame {𝟏} is rotated with 𝜋 rad from the frame {0}. Then the rotation matrix is 

 

𝑅𝟎𝟏 = [𝑢𝑥1
𝑢𝑦2] = [

−1 0
0 −1

] 

  

A position with the coordinates (4, 3) in the frame {0} can be calculated to the coordinates in the 

frame {1} by using the rotation matrix. 

 

𝑝{1} = 𝑅𝟎𝟏𝑝{0} = [
−1 0
0 −1

] [
4
3

] = [
−4
−3

] 

 

                                           

4 Rotation matrix, Wikipedia (https://en.wikipedia.org/wiki/Rotation_matrix) 

https://en.wikipedia.org/wiki/Rotation_matrix
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Figure 11 Rotation with 𝝅 𝐫𝐚𝐝 from the frame {𝒊} to {𝒋} 

 

As shown in the example of two-dimensional rotation matrix, the rotation matrix is determined by 

the unit directions vectors in the reference frame. In addition, the rotation matrix is useful to 

calculate the position and orientation values in different coordinate systems. Note that a 

coordinate system is composed of an origin and a frame, the directions of axes. In robotics, we use 

the three-dimensional (3-by-3) rotation matrix. 

 

𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] 

 

However, it is inconvenient to use 9 numerical values to represent the orientation. Therefore, other 

ways are also used to represent the orientation. 
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Euler angles 

 

The Euler angles are three angles introduced to describe the orientation of rigid body with respect 

to a fixed coordinate system.5 Any orientation can be achieved by composing three elemental 

rotations about the axes of a coordinate system. To be specific, rotate the angles of γ, β and α 

along the X, Y and Z axes from the reference frame, respectively then you will achieve the orientation. 

In the figure 5, the reference frame is shown in blue and the rotated orientation is shown in red. 

The angles γ, β and α can also be called RPY (roll, pitch and yaw). 

 

 

Figure 12 Proper Euler angles geometrical definition 

 

The Euler angles are used to understand the robot orientation, but it should be converted to the 

rotation matrix for calculations such as kinematics and dynamics. Given Euler angles γ, β and α, the 

rotation matrix can be calculated by the following equations.6 

 

𝑅𝑥(𝜃) = [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

] 

𝑅𝑦(𝜃) = [
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

] 

𝑅𝑧(𝜃) = [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] 

                                           

5 Euler angles, Wikipedia (https://en.wikipedia.org/wiki/Euler_angles)  

6 Planning Algorithms, Steven M. LaValle (http://planning.cs.uiuc.edu/node103.html) 

https://en.wikipedia.org/wiki/Euler_angles
http://planning.cs.uiuc.edu/node103.html


16 

 

𝑅 = 𝑅𝑧(𝛼)𝑅𝑦
(𝛽)𝑅𝑥(𝛾)

= [

cos 𝛼 cos 𝛽 cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾
sin 𝛼 cos 𝛽 sin 𝛼 sin 𝛽 sin 𝛾 + cos 𝛼 cos 𝛾 sin 𝛼 sin 𝛽 cos 𝛾 − cos 𝛼 sin 𝛾

− sin 𝛽 cos 𝛽 sin 𝛾 cos 𝛽 cos 𝛾
]

= [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] 

 

A given rotation matrix R, the Euler angles are determined as below.  

 

𝛽 = atan2 (−𝑟31, √𝑟11
2 + 𝑟21

2) 

𝛼 = atan2 (
𝑟21

cos 𝛽
,

𝑟11

cos 𝛽
) 

𝛾 = atan2 (
𝑟32

cos 𝛽
,

𝑟33

cos 𝛽
) 

 

The Euler angles are preferred because only three values are needed and geometrically easy to 

understand compared to other methods. However, there are two critical disadvantages in this 

representation. The values are not continuous so that calculations with the Euler angles are 

complicated. In addition, the final orientation depends on the sequence of rotations. In other words, 

even with the same amounts of roll, pitch and yaw, the orientations will be different whether it is 

rotated with roll first or yaw first as shown in the figure 6, which is confusing. In UR robots, RPY 

values can be monitored in the Move tab of teach pendant. Also, URScript functions rpy2rotvec and 

rotvec2rpy are available to support the Euler angles.  

 

 

Figure 13 Orientations depends on the sequence of rotations 
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Rotation vector 

 

The axis-angle representation parameterizes a rotation in the linear space by a unit vector 𝑢 

indicating the direction of an axis of rotation, and an angle 𝜃 describing the magnitude of the 

rotation about the axis.7 The axis-angle representation can define the relationship between two 

orientations. For example, n figure 7, the blue orientation can be rotated by the angle 𝜃 along the 

direction vector 𝑢 to the red orientation. 

 

 

Figure 14 Axis-angle representation 

 

If we have a fixed reference frame such as the base frame in UR robots, we can represent any 

orientation by four numbers: three elements for the unit direction vector and an angle. If we multiply 

the angle to each element of the unit direction vector, we can reduce to the three numerical values, 

which we can call the rotation vector. 

 

𝑟 = [

𝑟𝑥

𝑟𝑦

𝑟𝑧

] = [

𝜃𝑢𝑥

𝜃𝑢𝑦

𝜃𝑢𝑧

] 

 

The axis-angle representation is useful in the robot control because it is free from continuity and 

rotational sequence issues, the limitations of the Euler angles. However, it is hard to match between 

the physical orientation and the numerical values of the rotation vectors. In UR robots, we use the 

rotation vector to represent the orientation of the robot pose. 

 

To convert to the rotation matrix, the rotation vector should be divided into the angle and unit 

direction vector. 

                                           

7 Axis-angle representation, Wikipedia 

(https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation) 

https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
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𝜃 = √𝑟𝑥
2 + 𝑟𝑦

2 + 𝑟𝑧
2 

𝑢 = [

𝑢𝑥

𝑢𝑦

𝑢𝑧

] = [

𝑟𝑥/𝜃
𝑟𝑦/𝜃

𝑟𝑧/𝜃
] 

 

Then, further calculations are needed as follows. 

 

c = cos 𝜃 

s = sin 𝜃 

C = 1 − cos 𝜃 

 

𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]=[

𝑢𝑥𝑢𝑥𝐶 + 𝑐 𝑢𝑥𝑢𝑦𝐶 − 𝑢𝑧𝑠 𝑢𝑥𝑢𝑧𝐶 + 𝑢𝑦𝑠

𝑢𝑦𝑢𝑥𝐶 + 𝑢𝑧𝑠 𝑢𝑦𝑢𝑦𝐶 + 𝑐 𝑢𝑦𝑢𝑧𝐶 − 𝑢𝑥𝑠

𝑢𝑧𝑢𝑥𝐶 − 𝑢𝑦𝑠 𝑢𝑧𝑢𝑦𝐶 + 𝑢𝑥𝑠 𝑢𝑧𝑢𝑧𝐶 + 𝑐
] 

 

Given a rotation matrix, the rotation vector can be calculated as follows. 

 

𝜃 = acos (
Trace(𝑅) − 1

2
) 

𝑢 =
1

2 sin 𝜃
[

𝑟32 − 𝑟23

𝑟13 − 𝑟31

𝑟21 − 𝑟12

] 
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Exercise: URScript function to get a feature plane from three points 

 

(Hint: X, Y and Z axes are determined by the right-hand rule8) 

 

 

 

Step 1. Get direction vectors 𝑑12(from 𝑝1 to 𝑝2) and 𝑑13(from 𝑝1 to 𝑝3). 

 

 

 

Step 2. Get the direction vector of Z axis by the cross product of 𝑑12 and 𝑑13.  

(Hint: the direction vector of Z axis is the normal vector of the plane defined by three points.) 

 

                                           

8 Right-hand rule, Wikipedia (https://en.wikipedia.org/wiki/Right-hand_rule) 

https://en.wikipedia.org/wiki/Right-hand_rule
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Step 3. Get X and Z unit direction vectors by normalizing 𝑑12 and 𝑑𝑧. 

(Hint: the direction vector from 𝑝1 to 𝑝2 is the direction of X axis.) 

 

 

 

Step 4. Get Y unit direction vector by the cross product of Z and X unit direction vectors. 

 

 

 

Step 5. Get the rotation matrix from the unit direction vectors. 

 

𝑅 = [𝑢𝑥 𝑢𝑦 𝑢𝑧] 
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Step 6. Convert from rotation matrix to rotation vector 

(Hint: use a URScript function rotmat2rotvec.) 

 

Step 7. Get feature plane with the origin at 𝑝1 and the frame achieved at Step 6. 
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Pose transformation 

How to describe changes of position and orientation 

 

 

 

Transformation matrix 

 

You may need to move the robot from the current pose with the certain amount in position and 

orientation. Given a current pose and changes of position and orientation, the target pose can be 

calculated as follows. 

 

𝑝𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡∆𝑝 

𝑅𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡∆𝑅 

 

The movement in position can be called translation and that in orientation can be represented by 

rotation. Both translation and rotation can be combined and mathematically represented as the 

transformation matrix as below.9 

 

𝑇 = [
𝑅 𝑝
0 1

] = [

𝑟11 𝑟12

𝑟21 𝑟22

𝑟13 𝑝1

𝑟23 𝑝2
𝑟31 𝑟32

0 0
𝑟33 𝑝3

0 1

] 

 

The transformation matrix can be used not only for the movement but also to represent a pose. 

The above example to move from a current pose with changes of position and orientation can be 

represented by the transformation matrix as below. 

 

[
𝑅𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑡𝑎𝑟𝑔𝑒𝑡

0 1
] = 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡∆𝑇 = [

𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡

0 1
] [

∆𝑅 ∆𝑝
0 1

] 

 

 

Pose transformation in URScript 

 

 

It can be generalized for the robot movement from a pose 𝑇1  with a certain amount of 

transformation 𝑇2 and pose_trans(Pose1, Pose2) can return the target pose as below. 

 

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇1𝑇2 = [
𝑅1 𝑝1

0 1
] [

𝑅2 𝑝2

0 1
] 

𝑝𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑝1 + 𝑅1𝑝2 

                                           

9 Modern Robotics: Mechanics, Planning, and Control, Frank C. Park and Kevin M. Lynch 
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𝑅𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅1𝑅2 

 

This is exactly the URScript function pose_trans in UR robots. In the same way, the URScript function 

pose_add can be represented as follows. 

 

𝑝𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑝1 + 𝑝2 

𝑅𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅1𝑅2 

 

In addition, now we can understand the meaning of the URScript function pose_inv. It is just the 

inverse of the pose transformation matrix as below. 

 

𝑇−1 = [
𝑅 𝑝
0 1

]
−1
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Exercise: 2D positioning with vision system 

 

The target position can be achieved by using the 2D vision system. Given the offset of 𝑝𝑥 , 𝑝𝑦 , 𝑟𝑧 

in the vision frame as reference, the target position in the base frame can be calculated as follows. 

 

𝑝𝑜𝑠𝑒𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑝[ 𝑝𝑥 , 𝑝𝑦, 0, 0, 0, 𝑟𝑧 ] 

𝑝𝑜𝑠𝑒𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑝𝑜𝑠𝑒_𝑡𝑟𝑎𝑛𝑠(𝑝𝑜𝑠𝑒
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

, 𝑝𝑜𝑠𝑒𝑜𝑓𝑓𝑠𝑒𝑡) 
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Exercise: Get TCP force in tool coordinate system 

 

The URScript function get_tcp_force returns the TCP force values in the base coordinate system. 

Please write a script function to return the TCP force values in the tool coordinate system. 

 

(Hint: You may have to translate the force and torque values, respectively in the inverse tool frame.) 

 

𝑓𝐵𝑎𝑠𝑒 = 𝑅𝑇𝑜𝑜𝑙𝑓𝑇𝑜𝑜𝑙 

𝑓𝑇𝑜𝑜𝑙 = (𝑅𝑇𝑜𝑜𝑙)−1𝑓𝐵𝑎𝑠𝑒 

 

𝜏𝐵𝑎𝑠𝑒 = 𝑅𝑇𝑜𝑜𝑙𝜏𝑇𝑜𝑜𝑙 

𝜏𝑇𝑜𝑜𝑙 = (𝑅𝑇𝑜𝑜𝑙)−1𝜏𝐵𝑎𝑠𝑒 
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Exercise: Rotate the TCP orientation with respect to the base frame. 

 

In an application with a spray gun, the robot orientation should be rotated with an angle with 

respect to the base frame axes. Given a TCP pose, a rotational angle and an axis in the base frame, 

get the target pose. 

 

(Hint: direction vectors of the base frame axes should be represented in the tool frame) 
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Robot kinematics 

How to convert between the joint and linear spaces 

 

 

 

A single pose can be described in two ways as there are two spaces: the joint and linear spaces. 

The calculation to convert between the joint angular positions and the TCP position and orientation 

is called kinematics.  

 

 

Forward kinematics 

 

Each joint angle can directly be monitored by the position sensor called encoder. So, we can have 

the current joint positions. Now, we would like to know the TCP position and orientation of the 

robot in the linear space. The calculation to convert from the joint positions to the TCP position 

and orientation is called forward kinematics. Given joint positions and DH(Denavit-Hartenberg) 

parameters, the transformation matrices can be defined between adjacent joints. The forward 

kinematics can be calculated simply by multiplying the transformation matrices from the first to last 

joints.10 In UR robots, the DH parameters are available from the support website.11 

 

 

Figure 15 Frames of each joint 

                                           

10 Forward kinematics, Wikipedia (https://en.wikipedia.org/wiki/Forward_kinematics) 

11 Parameters for calculations of kinematics and dynamics, UR Support Site (https://www.universal-

robots.com/how-tos-and-faqs/faq/ur-faq/parameters-for-calculations-of-kinematics-and-dynamics-

45257/) 

https://en.wikipedia.org/wiki/Forward_kinematics
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/parameters-for-calculations-of-kinematics-and-dynamics-45257/
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/parameters-for-calculations-of-kinematics-and-dynamics-45257/
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/parameters-for-calculations-of-kinematics-and-dynamics-45257/
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𝑇𝐵𝑎𝑠𝑒,6 = 𝑇𝐵𝑎𝑠𝑒,1 ∙ 𝑇1,2 ∙ 𝑇2,3 ∙ 𝑇3,4 ∙ 𝑇4,5 ∙ 𝑇5,6 

 

𝑇𝑛−1,𝑛 = Trans𝑧𝑛−1
(𝑑𝑛) ∙ Rot𝑧𝑛−1

(𝜃𝑛) ∙ Trans𝑥𝑛
(𝑎𝑛) ∙ Rot𝑥𝑛

(𝛼𝑛) 

 

Trans𝑧𝑛−1
(𝑑𝑛) = [

1 0 0
0 1 0
0 0 1

0
0

𝑑𝑛

0 0 0 1

] 

Rot𝑧𝑛−1
(𝜃𝑛) = [

cos 𝜃𝑛 − sin 𝜃𝑛 0
sin 𝜃𝑛 cos 𝜃𝑛 0

0 0 1

0
0
0

 0 0 0 1

] 

Trans𝑥𝑛
(𝑎𝑛) = [

1 0 0
0 1 0
0 0 1

𝑎𝑛

0
0

0 0 0 1

] 

Rot𝑥𝑛
(𝛼𝑛) = [

1 0 0
0 cos 𝛼𝑛 − sin 𝛼𝑛

0 sin 𝛼𝑛 cos 𝛼𝑛

0
0
0

 0 0 0 1

] 

 

The robot controller calculates the forward kinematics all the time in UR robots, and we can get the 

TCP position and orientation by using the URScript function get_actual_tcp_pose. 

 

 

Inverse kinematics 

 

Once the TCP pose is taught, the joint angles should be calculated to control each joint position. 

In robotics, inverse kinematics makes use of the kinematics equations to determine the joint 

positions that provide a desired TCP pose of the robot.12 The inverse kinematics can be calculated 

by the iterative optimization with Jacobian matrix. 

 

𝑥𝑛 = 𝑓(𝜃𝑛) 
∆𝑥 = 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥𝑛 

𝜃𝑛+1 = 𝜃𝑛 + 𝐽−1𝑥𝑛 (𝑖𝑓 ∆𝑥 > 𝜖) 

 

It is possible to yield multiple inverse kinematics solutions. In UR robots, the URScript function 

get_inverse_kin() allows to return the solution closest to the reference joint positions. 

 

It is important to note that there is no inverse kinematics solution when the robot is in singular 

areas.  

 

                                           

12 Inverse kinematics, Wikipedia (https://en.wikipedia.org/wiki/Inverse_kinematics) 

https://en.wikipedia.org/wiki/Inverse_kinematics
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Exercise: Avoid collisions by using q_near 

 

Assume that there is an obstacle near the robot. Given the target TCP pose, the elbow of robot 

would hit the obstacle depending on the joint positions. We would like to move to the joint positions 

corresponding to the target TCP pose to avoid the collision. 

 

 

 

Step 1. Find two different q_near for the target TCP pose. 

Step 2. Move to the two joint positions about the target TCP pose by using movej and 

get_inverse_kin. 

 

 

 

Step 3. Choose the proper q_near to avoid collisions. 
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Exercise: Limit workspace by wrist 1 position 

 

When the arm is stretched and close to the workspace boundary, the movement would be 

constrained. However, we are not able to know whether the robot is in the constrained or dexterous 

configuration by monitoring the TCP position. For example, the two robots below are in the same 

position but different orientation. The left robot may not move up any more but the right one can 

move to any directions.  

 

 

 

Thus, it would be helpful to monitor the origin position of wrist 1( joint 3) frame in the Figure 1 to 

ignore the orientation part caused by the wrist joints. Find the wrist 1 position. 

 

𝑇𝐵𝑎𝑠𝑒,6 = 𝑇𝐵𝑎𝑠𝑒,1 ∙ 𝑇1,2 ∙ 𝑇2,3 ∙ 𝑇3,4 ∙ 𝑇4,5 ∙ 𝑇5,6 

𝑇𝐵𝑎𝑠𝑒,6 = 𝑇𝐵𝑎𝑠𝑒,3 ∙ 𝑇3,4 ∙ 𝑇4,5 ∙ 𝑇5,6 
𝑇𝐵𝑎𝑠𝑒,6 = 𝑇𝐵𝑎𝑠𝑒,3 ∙ 𝑇3,6 

𝑇𝐵𝑎𝑠𝑒,3 = 𝑇𝐵𝑎𝑠𝑒,6 ∙ 𝑇3,6
−1 

 

𝑇𝑛−1,𝑛 = Trans𝑧𝑛−1
(𝑑𝑛) ∙ Rot𝑧𝑛−1

(𝜃𝑛) ∙ Trans𝑥𝑛
(𝑎𝑛) ∙ Rot𝑥𝑛

(𝛼𝑛) 

 

With the single rotating angle, we can directly put the angle into the pose variable. 

 

Trans𝑧𝑛−1
(𝑑𝑛) = 𝑝[0,0, 𝑑𝑛, 0,0,0] 

Rot𝑧𝑛−1
(𝜃𝑛) = 𝑝[0,0,0,0,0, 𝜃𝑛] 

Trans𝑥𝑛
(𝑎𝑛) = 𝑝[𝑎𝑛, 0,0,0,0,0] 

Rot𝑥𝑛
(𝛼𝑛) = 𝑝[0,0,0, 𝛼𝑛, 0,0] 
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Singularity 

Area where the robot is uncomfortable 

 

 

Robotic arm has many advantages including the high repeatability, fast speed, and wide working 

range. However, there is a limitation called singularity. There are many ways to describe the 

singularity but easy to say, singularity is a pose where the robot is uncomfortable, and the linear 

movement is limited near the singular area. With respect to the kinematics, there is no inverse 

kinematics solution within the singular area. Mathematically, the singularity occurs when the rank 

of Jacobian matrix becomes less than full rank, which means there is no inverse matrix of Jacobian. 

Physically, the robot loses one or more degree(s) of freedom thus may not be able to move in 

certain directions. In actual operation, motions defined in Cartesian space that pass near singularities 

can produce high joint speeds, which is unexpected to an operator.13 As the robot behavior near 

singularities is unexpected, it can be dangerous to the operator. It is necessary to understand and 

avoid the singularity. There are three types of singularities in UR robots.  

 

 

Outer workspace limit 

 

When the robot is stretched and close to the workspace boundary, the robot movement would be 

restricted. In the Figure 1, the spherical area with grey color is maximum reach and that with blue 

color is recommended working area. The robot can reach the grey area, but the movement would 

be limited when working in the area outside of the recommended reach. To avoid the outer 

workspace limit, you may arrange the equipment around the robot. If this is not possible, select a 

UR robot with a longer reach. 

 

 

Inner workspace limit 

 

In the Figure 1, you can find another grey area. Near the cylinder around the base axis, many 

positions/orientations will be physically unreachable due to the way the joints are laid out on the 

robot arm. If you try to move the robot linearly through the cylindrical area, the very high speed in 

certain joints (normally base joint) will be required even with a slow TCP speed. Layout should be 

changed in such a way that it is not necessary to work in or close to the central cylinder. If this is 

unavoidable, use MoveJ instead of MoveL. For the linear trajectory, the points between the two 

points will be interpolated and inverse kinematics should be calculated for all the interpolated points.  

                                           

13 ISO 10218-1:2011, Robots and robotic devices – Safety requirements for industrial robots. 



32 

 

However, there is no singularity issue in the joint movement as inverse kinematics is not needed. 

 

 

Figure 16 Recommended and maximum working area14 

 

 

Wrist alignment singularity 

 

In UR robots, the shoulder, elbow, and wrist 1 joints rotate in the same plane as shown by the 

arrows numbered 1, 2, and 3 in the figure 2. However, when we also align the movement of wrist 2 

joint with the same plane by moving it to an angle of 0 or 180 degrees, the robot loses a degree 

of freedom and the robot movement is limited. It is recommended to re-design layout to avoid this 

wrist 2 joint positions. Alternatively, you may offset the direction of the tool as shown in the Figure 

3, so that the tool can point horizontally without the problematic wrist alignment. 

 

                                           

14 What is a singularity?, Universal Robots Support Website (https://www.universal-

robots.com/how-tos-and-faqs/faq/ur-faq/what-is-a-singularity-42311/) 

https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/what-is-a-singularity-42311/
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/what-is-a-singularity-42311/
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Figure 17 Wrist alignment singularity 

 

 

Figure 18 Tool offset 
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Dynamics 

Physical characteristics of the robot 

 

 

 

When an object moves, there must be a velocity. If the object reaches a certain speed from the 

standstill, it means the velocity changes and an acceleration occurs. As Newton said, the force is 

the multiplication of mass and acceleration. The physical characteristics regarding the movement 

such as mass, position, velocity, acceleration and force can be analyzed by dynamics. The robot 

dynamics is very important as it enables to calculate necessary joint torques for each movement 

and detect collisions. 

 

 

Model torques 

 

In the robot program, we define the target position, speed and acceleration. Then the controller 

calculates the torques of each joint by the equations of motion as follow.15 

 

𝜏 = 𝑀(𝜃)�̈� + ℎ(𝜃, �̇�) 

 

where 𝜃, �̇�, �̈�  are vectors of joint position, velocity, and acceleration, 𝑀(𝜃)  is a mass matrix 

containing the mass and center of gravity, and ℎ(𝜃, �̇�) is combination of centripetal, Coriolis, gravity 

and friction terms. If we have the data of the robot model, given the payload, position, velocity, 

and acceleration, the model joint torques can be calculated. Because the calculated joint torques 

are used to control the robot, the incorrect payload setting can cause the robot damage. For 

better understanding, let us consider lifting an object as an example. If you believe that the object 

weighs 1kg, then your muscle should be ready to hold 1kg. In case when its real weight is 10kg, 

your muscle and tendon would not be ready, and your shoulder would be dislocated. In contrast, if 

you expect that the object is 10kg, but the actual weight is 1kg, then you would use too large 

power and your arms would be injured. Therefore, it is critical to set the correct payload weight 

and center of gravity. 

 

The above equation can be modified to calculate the acceleration from the given joint torques as 

below. The maximum allowed joint torques would affect the motion planning. 

 

�̈� = 𝑀−1(𝜃) (𝜏 − ℎ(𝜃, �̇�)) 

 

                                           

15 Modern Robotics: Mechanics, Planning, and Control, Frank C. Park and Kevin M. Lynch 
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Actual torques 

 

From the fact that the motor current is proportional to the motor torque, we can find the actual 

joint torques. 

 

𝜏 = 𝑘𝑡𝐼 

 

In addition, the joint torques can easily be converted to the TCP force by using the Jacobian 

matrix. 

 

𝜏 = 𝐽(𝜃)𝑇𝐹 
𝐹 = (𝐽(𝜃)𝑇)−1𝜏 

 

By comparing the model and actual TCP force values, the collision can be detected. If the model 

data is not precise, the collision detection does not work well. For example, in case when the payload 

weight and center of gravity are not correct, the controller might say that the collision is detected 

even if there was no actual collision. 
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Speed and acceleration 

How fast the robot is? 

 

 

 

Some people say that the UR robots are fast, but others claim the opposite. The word “fast” is 

subjective and would be misleading. However, it is possible to express how fast the robot is by 

using the objective numerical values, speed and acceleration. 

 

 

Joint speed 

 

The speed of an object is the magnitude of its velocity, which is the rate of change of its position.16 

It is obvious that the joint speed represents how fast the joint position changes. The maximum joint 

speed is typically determined by the technical specifications of motor and gear. Most industrial 

robot manufacturers provide the maximum joint speed data. In UR robots, the joint speed depends 

on the size of joint. In general, the larger joint has the higher torque capacity but tends to be slower. 

 

 

Figure 19 Speed profile 

 

To generate the robot trajectory, the speed profile can be considered. In the Figure 1, a speed 

profile is described to start at 𝑡0, accelerate the speed to reach the target velocity set in the robot 

program at 𝑡1, cruise with the constant speed from 𝑡1 to 𝑡2, then decelerate the speed to stop at 

𝑡1. The slope is acceleration and the area of profile is the distance.  

 

 

Linear speed 

                                           

16 Speed, Wikipedia (https://en.wikipedia.org/wiki/Speed) 

https://en.wikipedia.org/wiki/Speed
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A TCP linear speed is important to determine the robot can perform the specific task or not. However, 

we should be aware that the linear speed is complex. To simplify the concept, the linear speed 

would be the multiplication of the angular speed and the distance from the rotational axis to the 

TCP.  

 

𝑣 = 𝑙 ∗ 𝑤 

 

With the same joint speed, if the length of link is longer, then the linear speed will be higher. For 

example, when the base joint speed is same, the TCP speed of the left robot should be much higher 

than that of the right robot in the Figure 2. 

 

 

Figure 20 Stretched robotic arms 

 

The TCP linear speed is dependent on the robot pose as well as the joint speed and the length of 

link. Moreover, most robotic arms have six (less or more) links and joints. Accordingly, there are 

thousands of combinations in the joint speed and robot pose. Jacobian matrix describes the 

relationship between linear and joint spaces and the TCP velocities can be calculated by using the 

Jacobian matrix. However, the Jacobian matrix is also a function of joint position and the matrix is 

usually difficult to understand. 
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𝐽 =
𝜕𝑥

𝜕𝜃
=

𝜕𝑥

𝜕𝑡

𝜕𝑡

𝜕𝜃
 

�̇� = 𝐽(𝜃)�̇� 

 

For these reasons, it is sometimes difficult to define the maximum TCP linear speed. Each robot 

manufacturer tends to have its own way to represent the specification of the linear speed. Some 

manufacturer claims the speed applicable only for certain poses. For some robots, the maximum 

linear speed decreases depending on the payload weight and center of gravity. The TCP linear 

speed of UR robots is 1m/s with the maximum payload. All the UR robots can have the same TCP 

speed as UR10 has longer links but UR3 has faster joints. Basically, this value is achievable if the 

moving distance is sufficient. It means, if the distance is not large enough, the speed should be 

decelerated before reaching the target velocity. On the contrary, it is also possible to have the 

higher linear speed. For instance, when the robot moves with joint movement at stretched poses, 

the TCP linear speed could be faster than 1m/s. It may not be a good idea to select the robot for 

specific applications based only on the maximum TCP speed in the tech spec sheet. For UR robots, 

the brief validity can be simulated with URSim. 

 

 

Blending 

 

In automation process, a cycle time can be considered as a critical performance index. To reduce 

the cycle time, you may try to increase the speed. However, according to the speed profile, we can 

find that the robot spends a lot of time on acceleration and deceleration. In UR robots, blending 

enables to avoid stopping and restarting at each waypoint.  

 

 

Figure 21 Description of blending 
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The Figure 3 shows that the robot blends over WP_2 with radius r. Instead of stopping at WP_2, the 

robot moves around the WP_2 by minimizing to reduce the speed.  

 

 

Figure 22 Speed profile without blending 

 

 

Figure 23 Speed profile with blend radius 

 

 

Figure 24 Speed profile with blending 

 

The blending can be described as speed profiles in the Figure 4, 5, and 6. The cycle time can be 

reduced from 𝑡𝑊𝑃_3 to 𝑡𝑊𝑃_3′ by adding the blend radius to the movement.  

 

 

Acceleration 

 

Beside adding the blend radius, it could be a way to adjust the acceleration to optimize the robot 

movement. For example, if the moving distance is not large enough, increasing speed may never 
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affect the cycle time at all. The cycle time can be reduced by increasing the acceleration shown as 

the Figure 7. 

 

 

Figure 25 Speed profile with different accelerations 

 

However, it is important to note that too high acceleration can cause protective stops. Thus, the 

acceleration should be optimized by avoiding the problems. 

 

 

Safety limit 

 

Some people are confused of the maximum TCP speed as safety limit and as technical specification. 

For example, the maximum TCP speed is 1m/s, but the default parameter of maximum TCP speed 

limit is 1.5m/s. However, the objectives are different. The maximum speed as technical specification 

is about how fast the robot can move. Thus, the robot should be able to perform the specification. 

On the other hand, the purpose of maximum speed for safety function is to prevent the robot to 

reach the speed. It is not allowed to move faster than this parameter with MoveJ as well as MoveL. 

If the robot is faster than the safety limit parameter, the safety system will turn off the power.  
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Exercise: How to optimize the acceleration? 

 

(Hint: use the URScript function position_deviation_warning) 

 

Narrow down the waypoint that causes large deviation 

Adjust speed and acceleration for that waypoint. 
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Joint control 

Low level control 

 

 

 

You may be interested only in the TCP, but it is each joint to move the robot. Looking into the joint, 

there are three key components: motor, encoder, and gear. 

 

 

Motor 

 

A motor converts from the electrical energy to the kinetic energy and generates fast rotational 

speed. In UR robots, permanent magnet AC synchronous drive motors are used in each joint.17 The 

frameless motor designed to be directly embedded in joint enables safe motion with high 

performance.18 With respect to the motor drives, the vector control method is used.19 

 

 

Figure 26 Kollmorgen TBM Direct Drive Frameless Motors 

 

 

                                           

17 What type of motors are used in the robot, UR Support Site (https://www.universal-

robots.com/how-tos-and-faqs/faq/ur-faq/what-type-of-motors-are-used-in-the-robot-17270/) 

18 Human Collaboration: The Future of Robotics, Kollmorgen (https://www.kollmorgen.com/en-

us/solutions/robotics/collaborative-robots-cobots/) 

19 What type of motor drivers are used in the robot, UR Support Site (https://www.universal-

robots.com/how-tos-and-faqs/faq/ur-faq/what-type-of-motor-drivers-are-used-in-the-robot-

17269/) 

https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/what-type-of-motors-are-used-in-the-robot-17270/
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/what-type-of-motors-are-used-in-the-robot-17270/
https://www.kollmorgen.com/en-us/solutions/robotics/collaborative-robots-cobots/
https://www.kollmorgen.com/en-us/solutions/robotics/collaborative-robots-cobots/
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/what-type-of-motor-drivers-are-used-in-the-robot-17269/
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/what-type-of-motor-drivers-are-used-in-the-robot-17269/
https://www.universal-robots.com/how-tos-and-faqs/faq/ur-faq/what-type-of-motor-drivers-are-used-in-the-robot-17269/
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Encoder 

 

For the precise position control, the angular position of the motor is monitored by the position 

sensor called encoder. In UR robots, two encoders are used in each joint. A magnetic encoder 

monitors the motor position and an optical encoder monitors the position of output flange, so 

called joint position. The two redundant position sensors make the robot more reliable. In addition, 

unlike traditional robots equipped only with incremental encoders which require the battery backup, 

the absolute magnetic encoder disk remembers the previous position without the battery. The 

magnetic joint encoder has 20 bit of resolution and 0.1 degree of accuracy, and the repeatability is 

better than the unit of resolution.20 

 

 

Reduction gear 

 

A motor generates a high speed of rotation, but its power is not sufficient to handle the (relatively) 

heavy objects such as robot links and tools. The reduction gear can convert the high speed with 

low torque to the low speed with high torque. As an example of a gear with 10:1 of reduction 

ratio, when the motor rotates 10 revolutions, the joint output flange rotates 1 revolution. The 

rotational speed decreases 1/10, but the torque will be 10 times higher. You can easily imagine the 

principle of the gear from the bicycle. In UR robots, a strain wave gear is mounted in each joint. 

This is a type of reduction gear and well known as a harmonic drive.21 

 

 

Joint control 

 

When the TCP path is generated, it is converted to the target positions to be controlled. In each 

joint, a single target position is to be achieved usually by a simple control algorithm like the PID 

control. The joint control is also called a low-level control.  

 

In UR robots, it is basically not allowed to change any parameter in the low level. However, there is 

a URScript function servoj that can be used for online control of the robot joint position. For 

each joint, it calculates the error between the desired position and the actual position and adjusts 

the position accordingly. As input arguments, users can set the lookahead time and the gain to 

smoothen or sharpen the trajectory. The magnitude of the error is modified with the parameter 

                                           

20 AksIM™ supports Universal Robots for smart factory automation, Renishaw 

(https://www.renishaw.com/en/aksim-supports-universal-robots-for-smart-factory-automation--

40389) 

21 Strain wave gear principle, Harmonic Drive (https://www.youtube.com/watch?v=bzRh672peNk) 

https://www.renishaw.com/en/aksim-supports-universal-robots-for-smart-factory-automation--40389
https://www.renishaw.com/en/aksim-supports-universal-robots-for-smart-factory-automation--40389
https://www.youtube.com/watch?v=bzRh672peNk
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gain, which can range from 100 to 2000. Its effect is similar to the P gain of a PID controller. The 

higher this value is, the faster reaction the robot will have. However, it is more likely to produce 

oscillations and shakiness. The default value is 300. The parameter lookahead_time plays a role in 

the error calculation by predicting the future position of the joint some time in advance. It can 

range from 0.03 to 0.2 seconds. The higher this value is, the slower the reaction will be. Nevertheless, 

the movement will become smoother and with fewer sharp movements. The default value is 0.1. 
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Exercise: How to control the robot in real time? 

 

Note: RTDE can be used for real-time control. If you send the script function via client interfaces 

(30001~30003), each script should be compiled, and the controller cannot guarantee the desired 

time interval. 

 

In the main program, execute the URScript servoj. 

In thread, receive the joint positions via RTDE input_double_register_x in thread every 8msec. 
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Repeatability 

How accurate the robot is? 

 

 

 

What we expect to the industrial robot is fast and accurate motion. It is interesting to note that the 

accuracy can be ambiguous. In the shooting sports, if the shots are closer to the center, the scores 

will be higher. In the Figure 1, the left should achieve the higher score in the shooting sports. Then, 

can we say that the left is more accurate for the industrial robots? To answer for the question, we 

need to clarify the definition of accuracy. In the field of robotics, the two different terms are used 

to avoid confusion. 

 

 

Figure 27 Results of shooting sports 

 

 

Repeatability 

 

In most cases, the physical target positions are taught, and the trajectories are defined in the robot 

program. Then, the robot will move to the same target positions again and again to perform the 

assigned tasks as long as the program is running. If the positions where robot reaches change each 

cycle, it would affect the tasks in a negative way. A technical specification, repeatability, presents 

the maximum deviation when the robot keeps reaching the same target position. In the Figure 1, 

the right one has a better repeatability because all three shots are close each other despite the 

lower score. 

 

The repeatability is regarded as a primary criterion on the robot accuracy and most robot 

manufacturers provide the value. When measuring the repeatability, the following equations referred 

from ISO 9283 can be used.22  

                                           

22 ISO 9283:1998, Manipulating industrial robots – Performance criteria and related test methods 
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𝑙𝑗 = √(𝑥𝑗 − �̅�)
2

+ (𝑦𝑗 − �̅�)
2

+ (𝑧𝑗 − 𝑧̅)
2
 

𝑙 ̅ =
1

𝑛
∑ 𝑙𝑗

𝑛

𝑗=1

 

𝑆𝑙 = √
∑ (𝑙𝑗 − 𝑙)̅

2𝑛
𝑗=1

𝑛 − 1
 

𝑅𝑃𝑙 = 𝑙̅ + 3𝑆𝑙 

 

In general, the performance of repeatability is affected by the encoder resolution, gear backlash 

and motor control software. In UR robots, the gear has less than 0.1 arcmin (0.03 mrad) of 

repeatability23 and the encoder has 20 bit of resolution.24 The repeatability of UR3e and UR5e is 

+/-0.03mm and that of UR10e is +/-0.05mm. 

 

 

Absolute accuracy 

 

In theory, given DH parameters and joint positions, the TCP position and orientation can be 

calculated by the forward kinematics model. However, in reality, the model TCP pose may not be 

same as the physical pose. This is mainly because of the joint zero position and the mechanical 

clearance such as the length of link. The absolute accuracy represents the deviation between the 

model and actual poses. It is hard to guarantee the absolute accuracy due to the mechanical 

limitations. Thus, most robot manufacturers do not offer the data. 

 

However, the absolute accuracy is still important for some situations/applications. For example, if 

you use the vision system or program the robot by using the offline simulation software, the 

absolute accuracy and linearity would be critical. Also, when you replace the joint or the entire robot, 

it should be very important to avoid re-teaching all the target points. 

 

 

Kinematic calibration 

 

In the Figure 1, the right player can fix their accuracy by adjusting the targeting. However, in the 

robotic arm, a little bit more complex method, kinematic calibration is required. The kinematic 

                                           

23 Engineering Data HFUC 2UH, Harmonic Drive AG 

(https://harmonicdrive.de/fileadmin/user_upload/2014_12_ED_1019644_HFUC_2UH.pdf) 

24 Data sheet: AksIM off-axis rotary absolute encoder, Renishaw (https://www.rls.si/en/aksim-off-

axis-rotary-absolute-encoder) 

https://harmonicdrive.de/fileadmin/user_upload/2014_12_ED_1019644_HFUC_2UH.pdf
https://www.rls.si/en/aksim-off-axis-rotary-absolute-encoder
https://www.rls.si/en/aksim-off-axis-rotary-absolute-encoder
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calibration can be performed by measuring the robot position by the external devices such as laser 

tracker. In UR robots, we conduct the dual robot kinematic calibration during production. The two 

robots are connected and move together then optimize the calibration parameters. The benefit is 

to complete the calibration without the use of external measurement equipment. 25 Once the 

calibration is completed, you will be able to check the statistics data to show the absolute accuracy.26 

The DH parameters of calibrated robots should be different from the model values. Thus, if the TCP 

pose of real robot is different from that of URSim, this is because of the kinematic calibration. 

 

 

Figure 28 Dual robot calibration 

 

Due to the discrepancy in calibration parameters between different robots, the same joint positions 

may have different actual positions. It means, a robot program in a robot may not work well in 

another robot. To minimize the gap, when loading the robot program which is made in another 

robot, the controller would ask to convert the kinematics. 

 

                                           

25 Calibration and Programming of Robots, Universal Robots 

(https://patents.google.com/patent/US20130079928A1/en) 

26 Kinematic Calibration Manual, Universal Robots (https://s3-eu-west-1.amazonaws.com/ur-

support-site/41410/calibrationManual.pdf) 

https://patents.google.com/patent/US20130079928A1/en
https://s3-eu-west-1.amazonaws.com/ur-support-site/41410/calibrationManual.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/41410/calibrationManual.pdf
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Figure 29 Process to convert kinematics 

 

When replacing the joint or the whole robot, if it is not possible to perform the kinematic calibration, 

Program Correction by Key Waypoints can be used in UR robots. In the robot program, there should 

be key waypoints of which the position is critical. After replacing the joint or the entire robot, then 

load the robot program. What you have to do is to re-teach the key waypoints. Then, other 

waypoints will be adjusted automatically. 

 

 

 

  



50 

 

Exercise: How to calculate forward kinematics for calibrated robots 

 

You can find the kinematic calibration parameters from calibration.conf file. What you have to do is 

just to add the delta parameters to the model DH parameters. 

 

𝑑𝑐𝑎𝑙𝑖𝑏 = 𝑑 + ∆𝑑 
𝜃𝑐𝑎𝑙𝑖𝑏 = 𝜃 + ∆𝜃 
𝑎𝑐𝑎𝑙𝑖𝑏 = 𝑎 + ∆𝑎 
𝛼𝑐𝑎𝑙𝑖𝑏 = 𝛼 + ∆𝛼 

 

Note: delta_d values may be very large. This is because the Z axes of shoulder and elbow joints are 

parallel. However, the units are radians and meters, and the result of forward kinematics should be 

fine. 
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Exercise: Convert absolute accuracy level to repeatability level 

 

Iterative learning 
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Force control 

What is force control? 

 

 

 

To understand the force control, the first thing you have to do is to remind of the principle of robot 

motion control. As we discussed at the beginning, the robot performs the position control, which 

means the position is the target to be achieved in the control loop. During the force control, the 

robot does not perform the position control. In other words, in case when the force is the main 

target to achieved instead of the position, it is called the force control. 

 

 

Figure 30 General control loop diagram 

 

 

Motion for force control 

 

According to the Newton’s second law of motion 𝐹 = 𝑚 ∙ 𝑎, if the force exists, there should be the 

acceleration and the robot would move. In practice, however, the robot may not move until the 

force is larger than a certain amount of force, called a static friction force. Once the robot starts to 

move, the frictional force will change to the kinetic friction force, which is smaller than the maximum 

static friction force. In short, if the target force is large enough to overcome the friction force, the 

robot will move. 
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Figure 31 Friction force curve 

 

In UR robots, a force mode enables the robot to perform the force control, given the direction and 

target force value. In the Figure 3, the target force is 30N to the left direction. During the force 

mode active, the robot will move to the left. 

 

 

Figure 32 Force control 

 

 

Compliance control 

 

During the force control, if external force is added to the robot, what will happen? In the Figure 4, 

for instance, while the robot is doing the force control with the 30N of target force to the left 

direction, a human operator pushes the robot with 50N to the right direction. In this case, the net 

force will be 20N to the right direction, thus the robot would move to the right. 
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Figure 33 Compliance control 

 

As shown in the example of Figure 4, because the target force is the primary interest of the robot, 

it is accepted not to reach the target position in the force control. In case when the external force 

is added to the robot, the robot position can be changed. In other words, the robot position can 

be adapted to the environment, and the force control can also be called compliance control due 

to the characteristics. 

 

 

Relationship with force measurement 

 

Some people are confused the relationship between force control and force measurement. One 

common misunderstanding is that the force control depends only on the force measurement. Thus, 

the force control should be perfect if using the precise F/T (force and torque) sensor. However, we 

should know that the force control and force measurement are different. During the force control, 

the force measurement will be used for the force feedback term. It is just a part and there are more 

processes to complete the force control. The target force and torque values in the force control are 

converted to the target joint torques for the joint control. In this process, the singularity affects the 

calculations. If the robot is near the singular area, the force control would fail due to the force 

singularity. If we use the F/T sensor in tool like e-Series, the measured force and torque values are 

accurate, and it can contribute to the high quality of force control. Though, the robot is not free 

from the singularity issue. This is the limitation of motion control for the robotic arm. 

 

 

Force/Torque sensor in tool vs. Torque sensor in joint 
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In UR robots, the force mode is available for many different directions in the Cartesian space, but 

joint torque control is not available. Some robots like KUKA iiwa and Doosan offer the joint torque 

control. This is likely because the robots would like to show the performance of torque sensors in 

each joint. Many researchers want to use the joint torque control to develop their own controller 

as research projects. However, it is hard to find the real industrial application to require the joint 

torque control. 

 

In addition, the robots with joint torque sensors have another problem. The force and torque values 

in tool, which is useful for the application, should be converted from the joint torque values. Like 

mentioned above, the singularity affects the calculation to convert between the joint torques and 

tool force and torque. This is bad because the singularity would affect the force measurement as 

well as the force control. For industrial purposes, we can say that tool-oriented F/T sensor would 

be more useful. 

 

 

 

 


