
3/21/2019 Autoware Github / Gitlab - Google Docs

https://docs.google.com/document/d/155m-pnF5stxv7Qt5ulwPkSQHaR4pJZ7EqIN03Q7tK9Y/edit 1/6

Features seem to be fairly equal between Gitlab and Azure, so I don’t think either
really wins out by features.

https://about.gitlab.com/devops-tools/azure-devops-vs-gitlab.html

With Github / Gitlab, however TRI-AD would be able to provide support for hosting /
maintenance. There is also (we think) more general familiarity with these tools, which
are simpler to use and would make it easier for new or outside collaborators to start
contributing.

Options:

Really depends on what features we require:

https://about.gitlab.com/pricing/#gitlab-com

https://github.com/pricing
https://github.com/organizations/new

Github pricing in general is better (however this of course depends on the tier we
would require).

TRI-AD would be able to provide support for the following:

- Github host (self-hosted or public) + Gitlab CI Runners
- Public Github + Gitlab CI Runners seem to be the best option
- Maintain public repos, Gitlab runners are simple, easy to use

- Gitlab host (self-hosted or public) + Gitlab CI Runners
- Github host (self-hosted or public) + Jenkins Runners (we use this setup

internally right now, so this would probably be easiest to support
although that means we are “stuck” with Jenkins

Support we could provide:

- Deploy and update stack to a provided AWS account (we have
Terraform recipes for these already which would only require minor
modification)

- Maintain Gitlab / Github / Jenkins stack

Some questions which would probably help guide us towards the right choice:

- Number of users?
- What features do we need (guests? Collaborators? Issue tracking?)?

https://about.gitlab.com/devops-tools/azure-devops-vs-gitlab.html
https://about.gitlab.com/pricing/#gitlab-com
https://github.com/pricing
https://github.com/organizations/new

3/21/2019 Autoware Github / Gitlab - Google Docs

https://docs.google.com/document/d/155m-pnF5stxv7Qt5ulwPkSQHaR4pJZ7EqIN03Q7tK9Y/edit 2/6

- All open source projects or a mix?

Architecture of TRIAD Github Enterprise

 Primary and replica (HA)

3/21/2019 Autoware Github / Gitlab - Google Docs

https://docs.google.com/document/d/155m-pnF5stxv7Qt5ulwPkSQHaR4pJZ7EqIN03Q7tK9Y/edit 3/6

How is GHE backed up?
There is a data lifecycle management policy, which takes periodic snapshot of the GHE primary
instance’s data volume by searching for its unique tag name. The policy runs for every 12 hours and
stores the snapshot in the same region.

Then, we have a lambda function running on the primary region and it gets triggered by a CloudWatch
event every 12 hours. This lambda function gets the list of all the snapshots created by DLM, fetches
the latest snapshot by filtering on the creation date, and then copies them to the DR region for
redundant storage.

3/21/2019 Autoware Github / Gitlab - Google Docs

https://docs.google.com/document/d/155m-pnF5stxv7Qt5ulwPkSQHaR4pJZ7EqIN03Q7tK9Y/edit 4/6

How is GHE deployed?

The pipeline job, deploy-github-enterprise deploys all the required application infrastructure
resources into the target environment. The pipeline gets parameters for assuming a role into the
child account from the master account, and then performs a terraform deployment to create the
required resources.

Following are the parameters required to execute the pipeline for deploying GHE Appliances:

The pipeline job, deploy-github-enterprise deploys all the required application infrastructure
resources into the target environment. The pipeline gets parameters for assuming a role into the
child account from the master account, and then performs a terraform deployment to create the
required resources.

3/21/2019 Autoware Github / Gitlab - Google Docs

https://docs.google.com/document/d/155m-pnF5stxv7Qt5ulwPkSQHaR4pJZ7EqIN03Q7tK9Y/edit 5/6

How is GHE upgraded?

On a high level, the upgrade pipeline does the following:

● Triggers the “ bake-ami ” pipeline with the latest GHE AMI ID to bake an AMI with all the
pre-configurations

● Runs a SSM Automation document which puts the GHE primary instance in maintenance
mode, and removes replication configuration from the replica instance

● Triggers the “ deploy-github-enterprise " pipeline to replace the primary instance with the
new AMI

● Triggers the same pipeline again to replace the replica instance with the new AMI

The Upgrade process

1. Baking of new AMI:
● When a new GHE AMI is released, the “ bake-ami ” pipeline is used to create an encrypted AMI

with all the required tools like SSM agent and CW agent
● Refer section 26.4 to know more what the AMI baking process for GHE

2. SSM Automation Document:
● SSM automation runs workflows to perform common maintenance and deployment tasks if

EC2 instances and other resources.
● When this document is executed from the upgrade pipeline, it does the following:

○ Puts the GHE primary instance in Maintenance mode. This is to prevent GHE from being
online for pushing code.

○ Next it stops replication on the replica instance, this is done to maintain consistency with
primary node when the EBS volume is re-attached to the new instance.

3. Upgrade of the Primary/Replica instance:
● After successfully executing the SSM document, the upgrade pipeline does a Terraform

deployment by triggering “ deploy-github-enterprise ”. It dynamically provides the new AMI ID
for GHE primary instance.

● During deployment, the EBS data volume gets detached from old primary and attached to the
upgraded primary instance.

● Once deployed, the pipeline waits for the Primary instance to be healthy, by CURLing the
health check endpoint periodically.

3/21/2019 Autoware Github / Gitlab - Google Docs

https://docs.google.com/document/d/155m-pnF5stxv7Qt5ulwPkSQHaR4pJZ7EqIN03Q7tK9Y/edit 6/6

TRiAD Jenkins Setup

The high-level process to deploy the Shared Services (shared account in AWS in TRI-AD hosting
shared devtools) is:

- Clone the Shared Services repository
- Configure the variables for Terraform and Ansible
- Run the Ansible Playbook. It will:

- Checkout the Cloudformation Modules
- Deploy the Shared Services Environment
- Jenkins created in AWS environment

How are Jenkins Agents Setup?
The shared services Jenkins Master is responsible for deploying the required resources to all the AWS
accounts. As a best practice, it is recommended not to overload the Jenkins Master by running jobs
directly on the master itself. Instead, Jenkins agents are created using the Jenkins EC2 plugin to
dynamically spin-up when any job is scheduled.

● The Jenkins agents have the same capabilities as the Jenkins Master. They also use the same
AMI and security group.

● The SSH key for Jenkins agents is generated and uploaded to the EC2 key pairs. The EC2
plugin uses the newly generated key pair to spin-up the Jenkins agents.

● The cloud-init configuration within the EC2 plugin installs the build dependencies for the
Jenkins agent to start. The current values set for the agent instance type is t2.medium .

