
Bayesian Zig Zag
Developing probabilistic models
using grid methods and MCMC

Allen Downey
Olin College

ACM Learning Center
February 2019

These slides tinyurl.com/zigzagacm

https://tinyurl.com/zigzagacm

Bayesian methods

Increasingly important, but…

Bayesian methods

Increasingly important, but…

hard to get started.

Bayesian Zig Zag

An approach I think is good for

1. Learning.

2. Developing models iteratively.

3. Validating models incrementally.

Forward and inverse probability.

Forward probability

You have a model of the system.

You know the parameters.

You can generate data.

Inverse probability

You have a model of the system.

You have data.

You can estimate the parameters.

Start forward

Simulate the model.

Go backward

Run grid approximations.

Go forward

Generate predictive distributions.

And here is a key...

Go forward

Generate predictive distributions.

Generating predictions looks a lot like a PyMC model.

Go backward

Run the PyMC model.

Validate against the grid approximations.

Go forward

Use PyMC to generate predictions.

Let's look at an example.

Hockey?

Well, yes.

But also any system well-modeled by a Poisson process.

Poisson process

Events are equally likely to occur at any time.

1. How long until the next event?

2. How many events in a given interval?

Let's get to it

These slides tinyurl.com/zigzagacm

Read the notebook:

● Static view on GitHub.

● Live on Binder.

https://tinyurl.com/zigzagacm
https://github.com/AllenDowney/BayesMadeSimple/blob/master/zigzag2.ipynb
https://mybinder.org/v2/gh/AllenDowney/BayesMadeSimple/master?filepath=zigzag2.ipynb

I'll use Python code to show:

● Most steps are a few lines of code,

● Based on standard libraries (NumPy, SciPy, PyMC).

Don't panic.

STEP 1: FORWARD

Simulating hockey

Probability of scoring a goal in any minute is p.

Pretend we know p.

Simulate 60 minutes and add up the goals.

def simulate_game(p, n=60):

 goals = np.random.choice([0, 1], n, p=[1-p, p])

 return np.sum(goals)

Analytic distributions

Result of the simulation is binomial.

Well approximated by Poisson.

mu = n * p

sample_poisson = np.random.poisson(mu, 1000)

To compare distributions,

cumulative distribution function (CDF)

is better than

probability mass function (PMF).

Forward

So far, forward probability.

Given mu, we can compute p(goals | mu).

For inference we want p(mu | goals).

Bayes's theorem tells us how they are related.

B
y

m
at

tb
uc

k
(c

at
eg

or
y)

 -
O

w
n

w
or

k
by

 m
at

tb
uc

k.
, C

C
 B

Y
-S

A
 3

.0
, h

ttp
s:

//c
om

m
on

s.
w

ik
im

ed
ia

.o
rg

/w
/in

de
x.

ph
p?

cu
rid

=1
46

58
48

9

STEP 2: INVERSE

Bayesian update

Start with prior beliefs, p(mu), for a range of mu.

Compute the likelihood function, p(goals | mu)

Use Bayes's theorem to get posterior beliefs, p(mu | goals).

 def bayes_update(suite, data, like_func):

 for hypo in suite:

 suite[hypo] *= like_func(data, hypo)

 normalize(suite)

suite: dictionary with possible values of mu and probabilities

data: observed number of goals

like_func: likelihood function that computes p(goals | mu)

from scipy.stats import poisson

def poisson_likelihood(goals, mu):

 """Computes p(goals | mu)"""

 return poisson.pmf(goals, mu)

Gamma prior

Gamma distribution has a reasonable shape for this context.

And we can estimate parameters from past games.

alpha = 9

beta = 3

hypo_mu = np.linspace(0, 15, num=101)

gamma_prior = make_gamma_suite(hypo_mu, alpha, beta)

Grid approximation

mu is actually continuous.

We're approximating it with a grid of discrete values.

posterior = gamma_prior.copy()

posterior.bayes_update(data=6, poisson_likelihood)

From posterior to predictive

Posterior distribution

represents what we know about mu.

Posterior predictive distribution

represents a prediction about the number of goals.

STEP 3: FORWARD

Sampling

To sample the posterior predictive distribution:

1. Draw random mu from the posterior.

2. Draw random goals from Poisson(mu).

3. Repeat.

def sample_suite(suite, n):

 mus, p = zip(*suite.items())

 return np.random.choice(mus, n, replace=True, p=p)

suite: dictionary with possible values of mu and probabilities

sample_post = sample_suite(posterior, n)

sample_post_pred = np.random.poisson(sample_post)

Posterior predictive distribution

Represents two sources of uncertainty:

1. We're unsure about mu.

2. Even if we knew mu, we would be unsure about goals.

Forward PyMC

I'll use PyMC to run the forward model.

Overkill, but it helps:

● Validate: does the model make sense?

● Verify: did we implement the model we intended?

model = pm.Model()

with model:

 mu = pm.Gamma('mu', alpha, beta)

 goals = pm.Poisson('goals', mu)

 trace = pm.sample_prior_predictive(1000)

This confirms that we specified the model right.

And it helps with the next step.

STEP 4: INVERSE

model = pm.Model()

with model:

 mu = pm.Gamma('mu', alpha, beta)

 goals = pm.Poisson('goals', mu)

 trace = pm.sample_prior_predictive(1000)

model = pm.Model()

with model:

 mu = pm.Gamma('mu', alpha, beta)

 goals = pm.Poisson('goals', mu, observed=3)

 trace = pm.sample(1000)

STEP 5: FORWARD

post_pred = pm.sample_posterior_predictive(trace, samples=1000)

With a working PyMC model,

we can take on problems too big for

grid algorithms.

Two teams

Starting with the same prior:

● Update BOS with observed=3.

● Update ANA with observed=1.

model = pm.Model()

with model:

 mu_BOS = pm.Gamma('mu_BOS', alpha, beta)

 mu_ANA = pm.Gamma('mu_ANA', alpha, beta)

 goals_BOS = pm.Poisson('goals_BOS', mu_BOS, observed=3)

 goals_ANA = pm.Poisson('goals_ANA', mu_ANA, observed=1)

 trace = pm.sample(1000)

Probability of superiority

mu_BOS = trace['mu_BOS']

mu_ANA = trace['mu_ANA']

np.mean(mu_BOS > mu_ANA)

0.67175

post_pred = pm.sample_posterior_predictive(trace, samples=1000)

goals_BOS = post_pred['goals_BOS']

goals_ANA = post_pred['goals_ANA']

Probability of winning

win = np.mean(goals_BOS > goals_ANA)

0.488

lose = np.mean(goals_ANA > goals_BOS)

0.335

tie = np.mean(goals_BOS == goals_ANA)

0.177

Overtime!

Time to first goal is exponential with 1/mu.

Generate predictive samples.

tts_BOS = np.random.exponential(1/mu_BOS)

tts_ANA = np.random.exponential(1/mu_ANA)

win_ot = np.mean(tts_BOS < tts_ANA)

0.55025

total_win = win + tie * win_ot

0.58539425

Summary

Go Bruins!

Think Bayes

Chapter 7:

The Boston Bruins problem

Available under a free license

at thinkbayes.com.

And published by O'Reilly Media.

Please don't use this to gamble

First of all, it's only based on data from one previous game.

Also...

Please don't use this to gamble

Gambling a zero-sum game (or less).

If you make money,

you're just taking it from someone else.

As opposed to creating value.

If you made it this far, you probably have some skills.

Use them for better things than gambling.

https://opendatascience.com/data-science-for-good-part-1/

https://opendatascience.com/data-science-for-good-part-1/

And finally...

Thanks

Chris Fonnesbeck for help getting these examples running.

Colin Carroll for adding sample_prior_predictive.

Eric Ma for moderating today,

and for contributions to PyMC.

downey@allendowney.com
github

website

twitter

email

These slides: tinyurl.com/zigzagacm

https://tinyurl.com/zigzagacm

